一.利用回归树实现分类

分类也可以用回归树来做,简单说来就是训练与类别数相同的几组回归树,每一组代表一个类别,然后对所有组的输出进行softmax操作将其转换为概率分布,然后再通过交叉熵或者KL一类的损失函数求每颗树相应的负梯度,指导下一轮的训练,以三分类为例,流程如下:

二.softmax+交叉熵损失,及其梯度求解

分类问题,一般会选择用交叉熵作为损失函数,下面对softmax+交叉熵损失函数的梯度做推导:

softmax函数在最大熵那一节已有使用,再回顾一下:

\[softmax([y_1^{hat},y_2^{hat},...,y_n^{hat}])=\frac{1}{\sum_{i=1}^n e^{y_i^{hat}}}[e^{y_1^{hat}},e^{y_2^{hat}},...,e^{y_n^{hat}}]
\]

交叉熵在logistic回归有介绍:

\[cross\_entropy(y,p)=-\sum_{i=1}^n y_ilog p_i
\]

将\(p_i\)替换为\(\frac{e^{y_i^{hat}}}{\sum_{i=1}^n e^{y_i^{hat}}}\)即是我们的损失函数:

\[L(y^{hat},y)=-\sum_{i=1}^n y_ilog \frac{e^{y_i^{hat}}}{\sum_{j=1}^n e^{x_j^{hat}}}\\
=-\sum_{i=1}^n y_i(y_i^{hat}-log\sum_{j=1}^n e^{y_j^{hat}})\\
=log\sum_{i=1}^n e^{y_i^{hat}}-\sum_{i=1}^ny_iy_i^{hat}(由于是onehot展开,所以\sum_{i=1}^n y_i=1)
\]

计算梯度:

\[\frac{\partial L(y^{hat},y)}{\partial y^{hat}}=softmax([y_1^{hat},y_2^{hat},...,y_n^{hat}])-[y_1,y_2,...,y_n]
\]

所以,第一组回归树的拟合目标为\(y_1-\frac{e^{y_1^{hat}}}{\sum_{i=1}^n e^{y_i^{hat}}}\),第二组回归树学习的拟合目标为\(y_2-\frac{e^{y_2^{hat}}}{\sum_{i=1}^n e^{y_i^{hat}}}\),....,第\(n\)组回归树的拟合目标为\(y_n-\frac{e^{y_n^{hat}}}{\sum_{i=1}^n e^{y_i^{hat}}}\)

三.代码实现

import os
os.chdir('../')
from ml_models.tree import CARTRegressor
from ml_models import utils
import copy
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline class GradientBoostingClassifier(object):
def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0):
"""
:param base_estimator: 基学习器,允许异质;异质的情况下使用列表传入比如[estimator1,estimator2,...,estimator10],这时n_estimators会失效;
同质的情况,单个estimator会被copy成n_estimators份
:param n_estimators: 基学习器迭代数量
:param learning_rate: 学习率,降低后续基学习器的权重,避免过拟合
"""
self.base_estimator = base_estimator
self.n_estimators = n_estimators
self.learning_rate = learning_rate
if self.base_estimator is None:
# 默认使用决策树桩
self.base_estimator = CARTRegressor(max_depth=2)
# 同质分类器
if type(base_estimator) != list:
estimator = self.base_estimator
self.base_estimator = [copy.deepcopy(estimator) for _ in range(0, self.n_estimators)]
# 异质分类器
else:
self.n_estimators = len(self.base_estimator) # 扩展class_num组分类器
self.expand_base_estimators = [] def fit(self, x, y):
# 将y转one-hot编码
class_num = np.amax(y) + 1
y_cate = np.zeros(shape=(len(y), class_num))
y_cate[np.arange(len(y)), y] = 1 # 扩展分类器
self.expand_base_estimators = [copy.deepcopy(self.base_estimator) for _ in range(class_num)] # 拟合第一个模型
y_pred_score_ = []
# TODO:并行优化
for class_index in range(0, class_num):
self.expand_base_estimators[class_index][0].fit(x, y_cate[:, class_index])
y_pred_score_.append(self.expand_base_estimators[class_index][0].predict(x))
y_pred_score_ = np.c_[y_pred_score_].T
# 计算负梯度
new_y = y_cate - utils.softmax(y_pred_score_)
# 训练后续模型
for index in range(1, self.n_estimators):
y_pred_score = []
for class_index in range(0, class_num):
self.expand_base_estimators[class_index][index].fit(x, new_y[:, class_index])
y_pred_score.append(self.expand_base_estimators[class_index][index].predict(x))
y_pred_score_ += np.c_[y_pred_score].T * self.learning_rate
new_y = y_cate - utils.softmax(y_pred_score_) def predict_proba(self, x):
# TODO:并行优化
y_pred_score = []
for class_index in range(0, len(self.expand_base_estimators)):
estimator_of_index = self.expand_base_estimators[class_index]
y_pred_score.append(
np.sum(
[estimator_of_index[0].predict(x)] +
[self.learning_rate * estimator_of_index[i].predict(x) for i in
range(1, self.n_estimators - 1)] +
[estimator_of_index[self.n_estimators - 1].predict(x)]
, axis=0)
)
return utils.softmax(np.c_[y_pred_score].T) def predict(self, x):
return np.argmax(self.predict_proba(x), axis=1)
#造伪数据
from sklearn.datasets import make_classification
data, target = make_classification(n_samples=100, n_features=2, n_classes=2, n_informative=1, n_redundant=0,
n_repeated=0, n_clusters_per_class=1, class_sep=.5,random_state=21)
# 同质
classifier = GradientBoostingClassifier(base_estimator=CARTRegressor(),n_estimators=10)
classifier.fit(data, target)
utils.plot_decision_function(data, target, classifier)

#异质
from ml_models.linear_model import LinearRegression
classifier = GradientBoostingClassifier(base_estimator=[LinearRegression(),LinearRegression(),LinearRegression(),CARTRegressor(max_depth=2)])
classifier.fit(data, target)
utils.plot_decision_function(data, target, classifier)

《机器学习Python实现_10_06_集成学习_boosting_gbdt分类实现》的更多相关文章

  1. 简单物联网:外网访问内网路由器下树莓派Flask服务器

    最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...

  2. 利用ssh反向代理以及autossh实现从外网连接内网服务器

    前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...

  3. 外网访问内网Docker容器

    外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...

  4. 外网访问内网SpringBoot

    外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...

  5. 外网访问内网Elasticsearch WEB

    外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...

  6. 怎样从外网访问内网Rails

    外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...

  7. 怎样从外网访问内网Memcached数据库

    外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...

  8. 怎样从外网访问内网CouchDB数据库

    外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...

  9. 怎样从外网访问内网DB2数据库

    外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...

  10. 怎样从外网访问内网OpenLDAP数据库

    外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...

随机推荐

  1. 基于Hi3559AV100的视频采集(VDEC-VPSS-VO)整体框图设计

    下面给出基于Hi3559AV100的视频采集整体设计,具体设计将在后续给出: 图形采集端整体设计 Hi3559AV100软件程序按结构划分可分为4层,第一层是硬件驱动层,第二层是操作系统层,第三层是媒 ...

  2. POJ-1797(最短路变形-dijkstra)

    Heavy Transportation POJ-1797 这题是最短路题型的变形,该题不是求起点到终点的最短路,而是求路径中的最小边的最大值. 这题的求解思路是:将原来dijkstra中的松弛方程改 ...

  3. Codeforces 598D (ccpc-wannafly camp day1) Igor In the Museum

    http://codeforces.com/problemset/problem/598/D 分析:BFS,同一连通区域的周长一样,但查询过多会导致TLE,所以要将连通区域的答案储存,下次查询到该连通 ...

  4. `vi`——终端中的编辑器

    `vi`--终端中的编辑器 目标* `vi` 简介* 打开和新建文件* 三种工作模式* 常用命令* 分屏命令* 常用命令速查图 01. `vi` 简介 1.1 学习 `vi` 的目的 * 在工作中,要 ...

  5. 初探JavaScript原型链污染

    18年p师傅在知识星球出了一些代码审计题目,其中就有一道难度为hard的js题目(Thejs)为原型链污染攻击,而当时我因为太忙了(其实是太菜了,流下了没技术的泪水)并没有认真看过,后续在p师傅写出w ...

  6. Node.js 模块化你所需要知道的事

    一.前言 我们知道,Node.js是基于CommonJS规范进行模块化管理的,模块化是面对复杂的业务场景不可或缺的工具,或许你经常使用它,但却从没有系统的了解过,所以今天我们来聊一聊Node.js模块 ...

  7. 测试工程师Docker进阶

    学习整理来源 B站 狂神说Java https://space.bilibili.com/95256449/ 四.docker镜像 1.镜像是什么 镜像是一种轻量级.可执行的独立软件包,用来打包软件运 ...

  8. Matplotlib图例中文乱码

    plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正 ...

  9. linux搭建gtk的开发环境

    1:在终端中运行以下命令: sudo apt-get install libgtk2.0-dev 2:用以下指令查看是否安装成功: pkg-config --cflags --libs gtk+-2. ...

  10. .NetCore 导出Execl

    /* Nuget  - NPOI.2.5.1 */ using NPOI.HSSF.UserModel;using NPOI.SS.UserModel;using NPOI.XSSF.UserMode ...