1. 前言

大家好,我是安果!

众所周知,Python 最流行的爬虫框架是 Scrapy,它主要用于爬取网站结构性数据

今天推荐一款更加简单、轻量级,且功能强大的爬虫框架:feapder

项目地址:

​https://github.com/Boris-code/feapder

2. 介绍及安装

和 Scrapy 类似,feapder 支持轻量级爬虫、分布式爬虫、批次爬虫、爬虫报警机制等功能

内置的 3 种爬虫如下:

  • AirSpider

    轻量级爬虫,适合简单场景、数据量少的爬虫

  • Spider

    分布式爬虫,基于 Redis,适用于海量数据,并且支持断点续爬、自动数据入库等功能

  • BatchSpider

    分布式批次爬虫,主要用于需要周期性采集的爬虫

在实战之前,我们在虚拟环境下安装对应的依赖库

# 安装依赖库
pip3 install feapder

3. 实战一下

我们以最简单的 AirSpider 来爬取一些简单的数据

目标网站:aHR0cHM6Ly90b3BodWIudG9kYXkvIA==

详细实现步骤如下( 5 步)

3-1  创建爬虫项目

首先,我们使用「 feapder create -p 」命令创建一个爬虫项目

# 创建一个爬虫项目
feapder create -p tophub_demo

3-2  创建爬虫 AirSpider

命令行进入到 spiders 文件夹目录下,使用「 feapder create -s 」命令创建一个爬虫

cd spiders

# 创建一个轻量级爬虫
feapder create -s tophub_spider 1

其中

  • 1 为默认,表示创建一个轻量级爬虫 AirSpider

  • 2 代表创建一个分布式爬虫 Spider

  • 3 代表创建一个分布式批次爬虫 BatchSpider

3-3  配置数据库、创建数据表、创建映射 Item

以 Mysql 为例,首先我们在数据库中创建一张数据表

# 创建一张数据表
create table topic(    id         int auto_increment        primary key,    title      varchar(100)  null comment '文章标题',    auth       varchar(20)   null comment '作者',    like_count     int default 0 null comment '喜欢数',    collection int default 0 null comment '收藏数',    comment    int default 0 null comment '评论数');

然后,打开项目根目录下的 settings.py 文件,配置数据库连接信息

# settings.py

MYSQL_IP = "localhost"
MYSQL_PORT = 3306
MYSQL_DB = "xag"
MYSQL_USER_NAME = "root"
MYSQL_USER_PASS = "root"

最后,创建映射 Item( 可选 )

进入到 items 文件夹,使用「 feapder create -i 」命令创建一个文件映射到数据库

PS:由于 AirSpider 不支持数据自动入库,所以这步不是必须

3-4  编写爬虫及数据解析

第一步,首先使「 MysqlDB 」初始化数据库

from feapder.db.mysqldb import MysqlDB

class TophubSpider(feapder.AirSpider):

    def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.db = MysqlDB()

第二步,在 start_requests 方法中,指定爬取主链接地址,使用关键字「download_midware 」配置随机 UA

import feapder
from fake_useragent import UserAgent def start_requests(self):
yield feapder.Request("https://tophub.today/", download_midware=self.download_midware) def download_midware(self, request):
# 随机UA
# 依赖:pip3 install fake_useragent
ua = UserAgent().random
request.headers = {'User-Agent': ua}
return request

第三步,爬取首页标题、链接地址

使用 feapder 内置方法 xpath 去解析数据即可

def parse(self, request, response):
# print(response.text)
card_elements = response.xpath('//div[@class="cc-cd"]') # 过滤出对应的卡片元素【什么值得买】
buy_good_element = [card_element for card_element in card_elements if
card_element.xpath('.//div[@class="cc-cd-is"]//span/text()').extract_first() == '什么值得买'][0] # 获取内部文章标题及地址
a_elements = buy_good_element.xpath('.//div[@class="cc-cd-cb nano"]//a') for a_element in a_elements:
# 标题和链接
title = a_element.xpath('.//span[@class="t"]/text()').extract_first()
href = a_element.xpath('.//@href').extract_first() # 再次下发新任务,并带上文章标题
yield feapder.Request(href, download_midware=self.download_midware, callback=self.parser_detail_page,
title=title)

第四步,爬取详情页面数据

上一步下发新的任务,通过关键字「 callback 」指定回调函数,最后在 parser_detail_page 中对详情页面进行数据解析

def parser_detail_page(self, request, response):
"""
解析文章详情数据
:param request:
:param response:
:return:
"""
title = request.title url = request.url # 解析文章详情页面,获取点赞、收藏、评论数目及作者名称
author = response.xpath('//a[@class="author-title"]/text()').extract_first().strip() print("作者:", author, '文章标题:', title, "地址:", url) desc_elements = response.xpath('//span[@class="xilie"]/span') print("desc数目:", len(desc_elements)) # 点赞
like_count = int(re.findall('\d+', desc_elements[1].xpath('./text()').extract_first())[0])
# 收藏
collection_count = int(re.findall('\d+', desc_elements[2].xpath('./text()').extract_first())[0])
# 评论
comment_count = int(re.findall('\d+', desc_elements[3].xpath('./text()').extract_first())[0]) print("点赞:", like_count, "收藏:", collection_count, "评论:", comment_count)

3-5  数据入库

使用上面实例化的数据库对象执行 SQL,将数据插入到数据库中即可

# 插入数据库
sql = "INSERT INTO topic(title,auth,like_count,collection,comment) values('%s','%s','%s','%d','%d')" % (
title, author, like_count, collection_count, comment_count) # 执行
self.db.execute(sql)

4. 最后

本篇文章通过一个简单的实例,聊到了 feapder 中最简单的爬虫 AirSpider

关于 feapder 高级功能的使用,后面我将会通过一系列实例进行详细说明

我已经将文中所有代码上传到公众号后台,后台回复关键字「 airspider 」获取完整源码

如果你觉得文章还不错,请大家 点赞、分享、留言 下,因为这将是我持续输出更多优质文章的最强动力!

介绍一款能取代 Scrapy 的 Python 爬虫框架 - feapder的更多相关文章

  1. 教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神

    本博文将带领你从入门到精通爬虫框架Scrapy,最终具备爬取任何网页的数据的能力.本文以校花网为例进行爬取,校花网:http://www.xiaohuar.com/,让你体验爬取校花的成就感. Scr ...

  2. 【转载】教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神

    原文:教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神 本博文将带领你从入门到精通爬虫框架Scrapy,最终具备爬取任何网页的数据的能力.本文以校花网为例进行爬取,校花网:http:/ ...

  3. Python爬虫框架Scrapy教程(1)—入门

    最近实验室的项目中有一个需求是这样的,需要爬取若干个(数目不小)网站发布的文章元数据(标题.时间.正文等).问题是这些网站都很老旧和小众,当然也不可能遵守 Microdata 这类标准.这时候所有网页 ...

  4. Linux 安装python爬虫框架 scrapy

    Linux 安装python爬虫框架 scrapy http://scrapy.org/ Scrapy是python最好用的一个爬虫框架.要求: python2.7.x. 1. Ubuntu14.04 ...

  5. Python爬虫框架Scrapy实例(三)数据存储到MongoDB

    Python爬虫框架Scrapy实例(三)数据存储到MongoDB任务目标:爬取豆瓣电影top250,将数据存储到MongoDB中. items.py文件复制代码# -*- coding: utf-8 ...

  6. Python爬虫框架Scrapy

    Scrapy是一个流行的Python爬虫框架, 用途广泛. 使用pip安装scrapy: pip install scrapy scrapy由一下几个主要组件组成: scheduler: 调度器, 决 ...

  7. 《Python3网络爬虫开发实战》PDF+源代码+《精通Python爬虫框架Scrapy》中英文PDF源代码

    下载:https://pan.baidu.com/s/1oejHek3Vmu0ZYvp4w9ZLsw <Python 3网络爬虫开发实战>中文PDF+源代码 下载:https://pan. ...

  8. 《精通Python爬虫框架Scrapy》学习资料

    <精通Python爬虫框架Scrapy>学习资料 百度网盘:https://pan.baidu.com/s/1ACOYulLLpp9J7Q7src2rVA

  9. 常见Python爬虫框架你会几个?

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:三名狂客 正文 注意:如果你Python技术学的不够好,可以点击下方链接 ...

随机推荐

  1. AForge实现拍照

    记得先引用DLL private FilterInfoCollection videoDevices; private VideoCaptureDevice videoSource; BLL.AWBL ...

  2. Go的switch

    目录 go的switch 一.语法 二.默认情况 三.多表达式判断 四.无表达式 五.Fallthrough go的switch switch 是一个条件语句,用于多条件匹配,可以替换多个if els ...

  3. Spring中的依赖查找和依赖注入

    作者:Grey 原文地址: 语雀 博客园 依赖查找 Spring IoC 依赖查找分为以下几种方式 根据 Bean 名称查找 实时查找 延迟查找 根据 Bean 类型查找 单个 Bean 对象 集合 ...

  4. 【Java进阶面试系列之一】哥们,你们的系统架构中为什么要引入消息中间件?

    转: [Java进阶面试系列之一]哥们,你们的系统架构中为什么要引入消息中间件? **这篇文章开始,我们把消息中间件这块高频的面试题给大家说一下,也会涵盖一些MQ中间件常见的技术问题. 这里大家可以关 ...

  5. 剑指 Offer 26. 树的子结构

    剑指 Offer 26. 树的子结构 Offer 26 题目详情: 题解分析 解法一: 第一种比较容易想到的解法就是查看这两棵树的前序遍历和中序遍历序列是否都匹配. 因为前序遍历和中序遍历可以唯一确定 ...

  6. Apache配置 1. 默认虚拟主机

    编辑httpd.conf搜索httpd-vhosts,去掉#号 # vi /usr/local/apache2.4/conf/httpd.conf Include conf/extra/httpd-v ...

  7. url里bookmark是什么意思

    <a rel="bookmark" href="abc.com"> 点击查看 </a> rel 这个属性的全称是  relationsh ...

  8. Redis之数据类型和持久化及高可用

    数据类型 Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zset(sorted set:有序集合). String(字符串) String是r ...

  9. python数据分析三剑客基础之matpoltlib初解

    一.什么是matplotlib? python的底层绘图工具,主要做数据可视化图表,源自matplot. 二.为什么要学matplotlib? 1.它能将数据进行可视化,更直观的呈现出来 2.它能让数 ...

  10. WorkSkill整理之 java用Scanner 类输入数组并打印

    输入不确定长度的数组 import java.util.*; public static void main(String[] args){ System.out.println("请输入一 ...