[bzoj1222]产品加工
用f[i][j]表示完成前i个任务,在A机器上加工j小时时B机器上最少要工作多小时,转移就分为三种,即$f[i][j]=min(f[i-1][j-t1],f[i-1][j]+t2,f[i-t3]+t3)$,然后这个东西可以用类似于背包的方式优化到1维(注意要从大到小枚举)
1 #include<bits/stdc++.h>
2 using namespace std;
3 int n,a,b,c,s,ans,f[30005];
4 int main(){
5 scanf("%d",&n);
6 for(int i=1;i<=n;i++){
7 scanf("%d%d%d",&a,&b,&c);
8 if (!a)a=1e5;
9 if (!b)b=1e5;
10 if (!c)c=1e5;
11 for(int j=5*n;j>=0;j--){
12 f[j]+=b;
13 if (j>=a)f[j]=min(f[j],f[j-a]);
14 if (j>=c)f[j]=min(f[j],f[j-c]+c);
15 }
16 }
17 ans=f[0];
18 for(int i=1;i<=5*n;i++)ans=min(ans,max(i,f[i]));
19 printf("%d",ans);
20 }
[bzoj1222]产品加工的更多相关文章
- 【BZOJ1222】[HNOI2001]产品加工 DP
[BZOJ1222][HNOI2001]产品加工 Description 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同 ...
- BZOJ1222[HNOI2001]产品加工——DP
题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...
- BZOJ1222[HNOI 2001]产品加工
题面描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...
- 【bzoj1222】[HNOI2001]产品加工 背包dp
题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...
- BZOJ1222: [HNOI2001]产品加工(诡异背包dp)
Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 907 Solved: 587[Submit][Status][Discuss] Descriptio ...
- bzoj1222: [HNOI2001]产品加工--DP
DP神题orz dp[i]表示机器1工作i小时,机器2工作dp[i]小时 那么对于每个任务: 选1:dp[i]=dp[i-a]; 选2:dp[i]=dp[i]+b; 选1+2:dp[i]=dp[i-c ...
- bzoj1222: [HNOI2001]产品加工
注意时间都是 <= 5的.. #include<cstdio> #include<cstring> #include<cstdlib> #include< ...
- BZOJ1222 [HNOI2001]产品加工 - 动态规划- 背包
题解 怎么看都不像是个背包,直到我看了题解→_→, 第一次碰到这么奇怪的背包= = 定一个滚动数组$F_i$, $i$表示机器$a$用了$i$的时间, $F_i$表示机器$b$用了$F_i$的时间, ...
- bzoj 1222: [HNOI2001]产品加工 dp
1222: [HNOI2001]产品加工 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 381 Solved: 218[Submit][Status ...
随机推荐
- 洛谷3244 落忆枫音 (拓扑图dp+式子)
题目大意就是 给你一个DAG 然后添加一条边\(x->y\) ,询问以1为根的生成树的个数 QWQ 首先假设没有添加的边 答案就应该是 \[ans=\prod_{i=1}^{n} in[i] \ ...
- 2020.5.4-ICPC Pacific Northwest Regional Contest 2019
A. Radio Prize All boring tree-shaped lands are alike, while all exciting tree-shaped lands are exci ...
- pycharm安装第三方库
https://jingyan.baidu.com/article/4853e1e54b845e1909f7268f.html
- 【Java虚拟机3】类加载器
前言 Java虚拟机设计团队有意把类加载阶段中的"通过一个类的全限定名来获取描述该类的二进制字节流"这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需的类. ...
- 学习手册 | MySQL篇 · 其一
InnoDB关键特性 插入缓冲(Insert Buffer) 问题: 在InnoDB插入的时候,由于记录通常都是按照插入顺序,也就是主键的顺序进行插入的,因此,插入聚集索引是顺序的,不需要随机IO ...
- luogu P4243 [JSOI2009]等差数列 题解
前言: 这题真ex... 强烈谴责在题解里面放毒瘤题链接的屑出题人! 吐 ️ 解析: 这题分成两步走. 首先,既然题目中的修改操作是区间加等差数列,那么就容易想到在差分数组上进行操作. 然后就是相当恶 ...
- [调试笔记] 晚测5 T1 容易题
众所周知,sbwzx在考试一结束就嚷嚷T1是个sb题.那他为什么调了2小时才调出来呢?快和小编一起看看吧. Sb题:指除了sbwzx别人都能做出来的题 1.CE:震惊!sbwzx竟然连map都不会用, ...
- 攻防世界 杂项13.can_has_stdio?
打开发现是由trainfuck编码组成的小星星阵容,果断交给解密网站进行解密, 解密网站:http://ctf.ssleye.com/brain.html flag:flag{esolangs_for ...
- xmake v2.5.9 发布,改进 C++20 模块,并支持 Nim, Keil MDK 和 Unity Build
xmake 是一个基于 Lua 的轻量级跨平台构建工具,使用 xmake.lua 维护项目构建,相比 makefile/CMakeLists.txt,配置语法更加简洁直观,对新手非常友好,短时间内就能 ...
- 第05课 OpenGL 3D空间
3D空间: 我们使用多边形和四边形创建3D物体,在这一课里,我们把三角形变为立体的金子塔形状,把四边形变为立方体. 在上节课的内容上作些扩展,我们现在开始生成真正的3D对象,而不是象前两节课中那样3D ...