CF1555F Good Graph
有以下引理:
不存在两个合法环,他们存在公共边。
证明:公共边边权为 \(z\),第一个环除去公共边为 \(x\),第二个环除去公共边为 \(y\)。
则有 \(x \oplus z = 1\) \(y \oplus z = 1\),则存在另外一个简单环的权值为 \(x\oplus y = 0\),所以该图不合法。
我们知道一颗树上是没有环的。
所以一颗树不影响非树边的加入。
我们考虑先在这些边按照加边顺序里做一颗生成树出来。
这些边一定可以存在。
那么我们考虑那些非树边。
我们在加入一条非树合法边时,在 \((u,v)\) 这条路径上打上一个\(tag\)。
判断一条非树边是否合法时,我们可以查询 \((u,v)\) 是否有标记,并查询 \((u,v)\) 的异或和。
CF1555F Good Graph的更多相关文章
- [开发笔记] Graph Databases on developing
TimeWall is a graph databases github It be used to apply mathematic model and social network with gr ...
- Introduction to graph theory 图论/脑网络基础
Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...
- POJ 2125 Destroying the Graph 二分图最小点权覆盖
Destroying The Graph Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8198 Accepted: 2 ...
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [LeetCode] Graph Valid Tree 图验证树
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- [LeetCode] Clone Graph 无向图的复制
Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...
- 讲座:Influence maximization on big social graph
Influence maximization on big social graph Fanju PPT链接: social influence booming of online social ne ...
- zabbix利用api批量添加item,并且批量配置添加graph
关于zabbix的API见,zabbixAPI 1item批量添加 我是根据我这边的具体情况来做的,本来想在模板里面添加item,但是看了看API不支持,只是支持在host里面添加,所以我先在一个ho ...
- Theano Graph Structure
Graph Structure Graph Definition theano's symbolic mathematical computation, which is composed of: A ...
随机推荐
- 第四次Scrum Metting
日期:2021年4月29日 会议主要内容概述:交代近两日工作,进一步细化上次讨论细节,代码合并. 一.进度情况## 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 徐宇龙 后端 ...
- 修改git仓库的远程地址
在我们开发的过程中,代码一般是由 git 来管理的,但有些时候我们的 git 仓库的地址可能发生了变换,比如我们使用的 gitLab 地址发生了变化,那么这个时候如何来将原项目的 git 地址进行修改 ...
- spring security中ajax超时处理
spring security为我们的系统提供了方便的认证和授权操作.在系统中完成认证和授权后,一般页面页面上大多数是ajax和后台进行操作,那么这个时候可能就会面临session超时,ajax去访问 ...
- qwt使用细节
在使用QWT进行二维曲线绘制,使用方法如下: class Plot: public QwtPlot { Q_OBJECT -- } 报错:error LNK2001: 无法解析的外部符号"p ...
- 攻防世界 web5.disabled_button
我觉得戴上手套按应该可以! 方法一: 打开网址,发现flag按钮无法点击,F12查看源代码,删除disabled=" ",flag就点击了. 方法二 POST请求, 先分析一下源代 ...
- Linux上Qt旋转显示
对于嵌入式设备来说用于显示的LCD总是千奇百怪,比如说明明是一个竖屏,但是客户却要当横屏使用,也就是意味着我们需要将整个屏幕上显示的内容旋转90度或者270度. 这个操作对于Android系统来说相当 ...
- linux 内核源代码情景分析——越界访问
页式存储管理机制通过页面目录和页面表将每个线性地址转换成物理地址,当遇到下面几种情况就会使CPU产生一次缺页中断,从而执行预定的页面异常处理程序: ① 相应的页面目录或页表项为空,也就是该线性地址与物 ...
- openstack 虚机热迁移问题:虚机状态一直处于迁移中的情况处理
前提:在偶尔的虚机热迁移中,发现虚机一直属于迁移状态中. 但是查看后台流量监控,发现没有流量已经下来了.然后在目标机器上查看,发现kvm已经在目标机器上. 1.查看kvm 实际所处宿主机方法: a.拿 ...
- spark structured-streaming 最全的使用总结
一.spark structured-streaming 介绍 我们都知道spark streaming 在v2.4.5 之后 就进入了维护阶段,不再有新的大版本出现,而且 spark strea ...
- CSS学习笔记:display属性
目录 一.display属性概述 1. 块级元素和行内元素的区别 2.常见的块级元素和行内元素 3. display属性常见的属性值 二.测试display取各属性值的效果 1. 测试inline和b ...