[atARC087F]Squirrel Migration
对这棵树重心情况分类讨论:
1.若这棵树存在两个重心,分别记作$x$和$y$,如果将$(x,y)$断开,两棵子树大小都相同(都为$\frac{n}{2}$),此时$p_{i}$与$i$必然不同属于一个连通块中,证明如下:
考虑若$p_{i}$与$i$在一个连通块中,则必然有$p_{j}$和$j$也在同一个连通块中且与$i$不同,将其交换一定更优
将距离拆为两颗子树内部+$(x,y)$,即有$mx=2\sum dep_{i}(以(x,y)为根)+n$,方案数为$(\frac{n}{2}!)^{2}$
2.若这棵树仅有1个重心,类似于Distance Matching,若以重心为根,$mx=2\sum dep_{i}$
问题相当于要求任意$i$和$p_{i}$不在重心的同一个儿子中,考虑容斥,令集合$S$表示$i$和$p_{i}$在重心的同一个儿子中的$i$,$f_{S}$表示对应方案数
对$S$和$S$以外的的点分别计算(再相乘):
1.对$S$以外,考虑$i\in S$,其实可以将$p_{i}$理解为$i$,换言之将$p_{j}=i$的位置改为$p_{j}=p_{i}$即可,因此剩下的点任意排列,方案数为$(n-|S|)!$
2.对$S$以内,即从子树中选$i$个,即为$\prod_{son}a_{son}!c(sz_{son},a_{son})$($son$表示重心的儿子,$a_{son}$表示son子树内所选的节点个数)
由于$|S|=\sum_{son}a_{son}$,因此答案仅与$a_{i}$有关,对应答案为$(n-\sum_{son}a_{son})!\prod_{son}a_{son}!c(sz_{son},a_{son})^{2}$(对应的$|S|$有$\prod_{son}c(sz_{son},a_{son})$种)
令$f_{i}$表示当$\sum_{son}a_{son}=i$时$\prod_{son}c(sz_{son},a_{son})^{2}$的和,dp转移即可,时间复杂度为$o(n^{2})$(枚举子树和$a_{i}$的总量为$o(n)$),还可以用分治fft优化到$o(n\log^{2}n)$
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 5005
4 #define mod 1000000007
5 struct ji{
6 int nex,to;
7 }edge[N<<1];
8 vector<int>v;
9 int E,n,m,x,y,ans,head[N],sz[N],fac[N],inv[N],f[N][N];
10 int sqr(int n){
11 return 1LL*n*n%mod;
12 }
13 int c(int n,int m){
14 return 1LL*fac[n]*inv[m]%mod*inv[n-m]%mod;
15 }
16 void add(int x,int y){
17 edge[E].nex=head[x];
18 edge[E].to=y;
19 head[x]=E++;
20 }
21 void dfs(int k,int fa){
22 int mx=0;
23 sz[k]=1;
24 for(int i=head[k];i!=-1;i=edge[i].nex)
25 if (edge[i].to!=fa){
26 dfs(edge[i].to,k);
27 mx=max(mx,sz[edge[i].to]);
28 sz[k]+=sz[edge[i].to];
29 }
30 if (max(mx,n-sz[k])<=n/2){
31 if (!x)x=k;
32 else y=k;
33 }
34 }
35 int main(){
36 fac[0]=inv[0]=inv[1]=1;
37 for(int i=1;i<N-4;i++)fac[i]=1LL*fac[i-1]*i%mod;
38 for(int i=2;i<N-4;i++)inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
39 for(int i=1;i<N-4;i++)inv[i]=1LL*inv[i]*inv[i-1]%mod;
40 scanf("%d",&n);
41 memset(head,-1,sizeof(head));
42 for(int i=1;i<n;i++){
43 scanf("%d%d",&x,&y);
44 add(x,y);
45 add(y,x);
46 }
47 x=y=0;
48 dfs(1,0);
49 if (y){
50 printf("%d",sqr(fac[n/2]));
51 return 0;
52 }
53 dfs(x,0);
54 v.push_back(0);
55 for(int i=head[x];i!=-1;i=edge[i].nex)v.push_back(sz[edge[i].to]);
56 m=v.size()-1;
57 f[0][0]=1;
58 int s=0;
59 for(int i=1;i<=m;i++){
60 for(int j=0;j<=s;j++)
61 for(int k=0;k<=v[i];k++)
62 f[i][j+k]=(f[i][j+k]+1LL*fac[k]*sqr(c(v[i],k))%mod*f[i-1][j])%mod;
63 s+=v[i];
64 }
65 assert(s==n-1);
66 for(int i=0;i<n;i++){
67 int s=1LL*f[m][i]*fac[n-i]%mod;
68 if (i&1)s=mod-s;
69 ans=(ans+s)%mod;
70 }
71 printf("%d",ans);
72 }
[atARC087F]Squirrel Migration的更多相关文章
- AT3728 Squirrel Migration
AT3728 Squirrel Migration 就是给每个点分配两个匹配点(自环除外) 考虑最大值 考虑极限情况:每个边的贡献是min(sz[u],sz[v])*2 证明存在方案: 发现,如果哪边 ...
- [ARC087D] Squirrel Migration 补题记录
题目链接 简要题意: 给你一个\(N\)个节点的树,求一个\(1\cdots N\)的排列\((p_1,p_2,\cdots p_N)\) ,使得\(\sum dist(i,p_i)\)最大. 求这样 ...
- Atcoder 乱做
最近感觉自己思维僵化,啥都不会做了-- ARC103 F Distance Sums 题意 给定第 \(i\) 个点到所有点的距离和 \(D_i\) ,要求构造一棵合法的树.满足第 \(i\) 个点到 ...
- 【AtCoder】ARC087
C - Good Sequence 题解 用个map愉悦一下就好了 代码 #include <bits/stdc++.h> #define fi first #define se seco ...
- 写给.NET开发者的数据库Migration方案
微软给我们提供了一种非常好用的数据库迁移方案,但是我发现周围的同学用的并不多,所以我还是想把这个方案整理一下..NET选手看过来,特别是还在通过手工执行脚本来迁移数据库的同学们,当然你也可以选择EF的 ...
- EF Core 数据库迁移(Migration)
工具与环境介绍 1.开发环境为vs 2015 2.mysql EF Core支持采用 Pomelo.EntityFrameworkCore.MySql 源代码地址(https://github. ...
- Database first with EntityFramework (Migration)安装和升级
最近看了国外几个项目,发现用EntityFramework做Code First的项目现在很流行. 最让我有兴趣的一个功能则是,EntityFramework对于数据库的安装和升级的无缝完美支持,且很 ...
- Squirrel: 通用SQL、NoSQL客户端
安装 配置数据库 配置驱动 配置连接 如果你的工作中,需要使用到多个数据库,又不想在多种客户端之间切换来切换去.那么就需要找一款支持多数据库的客户端工具了.如果你要连接多个关系型数据库,你就可以使用N ...
- Laravel使用笔记 —— migration
在使用 php artisan make:migration 创建migration时,可用 --path 指定创建migration文件的路径, 如果在执行的 php artisan migrate ...
随机推荐
- Scala trait特质 深入理解
Scala trait特质 深入理解 初探Scala 特质trait 在Scala中,trait(特质)关键字有着举足轻重的作用.就像在Java中一样,我们只能在Scala中通过extends进行单一 ...
- Just My Code debugging
Just My Code debugging During a debugging session, the Modules window shows which code modules the d ...
- 【死磕 NIO】— Reactor 模式就一定意味着高性能吗?
大家好,我是大明哥,我又来了. 为什么是 Reactor 一般所有的网络服务,一般分为如下几个步骤: 读请求(read request) 读解析(read decode) 处理程序(process s ...
- MySQL:提高笔记-3
MySQL:提高笔记-3 学完基础的语法后,进一步对 MySQL 进行学习,前几篇为: MySQL:提高笔记-1 MySQL:提高笔记-2 MySQL:提高笔记-3,本文 说明:这是根据 bilibi ...
- 扩展spring data jpa的repository
在我们编写代码的过程中,spring data jpa为我们的持久层提供的极大的方便,但有时spring data jpa提供的repository并不能完全满足我们开发的需求,因此就需要进行扩展.s ...
- windows下wchar_t的问题
使用vs新建工程或者编译工程的时候默认在编译设置里面讲wchar_t设置为内置类型,如下图: 但是在编译相互依赖的工程的时候,如果有的工程不将wchar_t设置为内置类型的时候,将会出现链接错误,需要 ...
- 安装hexo博客
前言 ** 跟着步骤一步一步来进行安装 ** 准备环境:node.js和包管理器npm 1:查看包文件 接着安装 淘宝镜像源 sudo这个需要添加获取文件夹访问权限 sudo npm install ...
- 看动画学算法之:双向队列dequeue
目录 简介 双向队列的实现 双向队列的数组实现 双向队列的动态数组实现 双向队列的链表实现 双向链表的时间复杂度 简介 dequeue指的是双向队列,可以分别从队列的头部插入和获取数据,也可以从队列的 ...
- hdu 5183 Negative and Positive (NP)(STL-集合【HASH】)
题意: When given an array (a0,a1,a2,⋯an−1) and an integer K, you are expected to judge whether there i ...
- JAVA笔记9__异常/throw关键字/自定义异常/受检与非受检异常、assert关键字/StringBuffer、StringBuilder/代码国际化、动态文本
/** * 异常:在程序中导致程序中断运行的一些指令 * 1.受检异常:编译期 * 2.非受检异常:运行期 * 异常处理过程分析: * 1.一旦产生异常,系统会自动产生一个异常类的实例化对象 * 2. ...