halcon视觉入门扫盲篇

前言

    在公司让我研究视觉的时候,我是两眼一抹黑的。之前完全没有接触过视觉。综合权衡后选择了Halcon,使用的是HDevelop 13 (64-bit)。

    下载地址 官方下载

    破解有点麻烦,我使用的是文件替换破解。一个exe文件一个dll文件,替换即可。

假设以上环境搭建没有问题,现在开始了解视觉识别的套路

基础知识

既然是做视觉,就需要图像,不管这个图像是从摄像头读过来的还是从文件中读取的。图片有一些基础信息,比如:

通道:一张图片一般有3个通道,也就是R G B 三个通道,R 代表红色 G 代表绿色 B 代表蓝色。

像素:计算机存储每个图片有N多个像素点,我们常说某个相机有几百万像素,说的就是这个,像素在计算机存储层面不可分割,是最小粒子。但在视觉算法上是可以的(后面再说)。

灰度值:灰度也可以认为是亮度,也是黑白图像中点的颜色深度,范围一般从0到255,白色为255 ,黑色为0,故黑白图片也称灰度图像。(如此简单理解即可)

Region:区域,根据特征提取出来的一些范围。

算子:直接理解成方法。

知道这些基础知识以后,我们在来理解什么是视觉识别。也别去看百度百科了,简单的理解就是,通过提取图像中的特征,选取我们需要的区域,从而达到一定的目的。

比如,有如下图



需要识别每个方格中是否有芯片。这是一个需求。根据这个需求,我们来进行需求拆解:

1. 如何在这张图里面得到这些方格。

2. 如何在每个方格中判断芯片是否存在。

大体思路就是这样了,接下来对图像进行分析,得到具体解决问题的思路:

如何在这张图里面得到这些方格。

分析图像可以知道:

  1. 方格是白色的,亮度较高。但白色的内容不只有方格,所以在提取特征的时候,需要注意。

  2. 方格比较规整,都是方形,面积相似。

  3. 方格与方格相连,所在的区域在整个图像的中心位置。

以上就是分析图像得到的信息。这些信息就是方格的特征,我们通过特征进行筛选,从而得到所有的方格。

如何判断方格中是否存在芯片

此时我们的兴趣点就在每个方格中,所以分析每个方格,我们可以得出一下结论:

  1. 芯片面积大小都差不多。

  2. 因为光照不均匀,导致有些地方的芯片亮度较高,有些亮度比较低,这可能是我们识别芯片过程中的难点。

  3. 芯片都是矩形。

  4. 有些芯片跟白色方格线比较近,可能会给我们识别芯片带来干扰。

  5. 芯片颜色灰度跟方格中的背景色不一致。

  6. 如果方格中没有芯片,那么方格中没有上述特征。

以上是特征分析,和解决问题的思路,接下来是编程的套路。

视觉分析的编程套路一般如下几个步骤:

  1. 打开图片(OpenImage)
  2. 将图片分解成3通道图片,或是转成灰度图(GrayImage)。
  3. 二值化或动态二值化(Region)。
  4. 联通区域。
  5. 特征筛选。
  6. 如果区域有干扰,一般会进行一下操作:
    1. 腐蚀
    2. 膨胀
    3. 形状转换
    4. 以上步骤重复,或组合重复。
  7. 根据需要,还可以合并区域,并重复4-6,从而达到目的。
  8. 输出区域并标注。

实则还有其他的处理方式,比如我们需要的区域特征不明显,不需要的区域特征很明显,此时,我们可以获取不需要的区域,然后使用相减的方式得到需要的区域。(这个会在实际的使用中讲到)

接下来进行答疑

我在学习的过程中,产生了很多疑问,直到我反复编程理解后才明白为什么要这么做。在这里,我会先给出答案。

Q:为什么需要将图片分解成3通道图片,或是灰度图?

A:我的理解是,因为如果不分解,图片是RGB三通道图片,那么程序就不知道对哪个通道进行操作。将图片转换为灰度图或是单通道后,我们才能根据图片的明暗,也就是灰度,进行特征提取。

Q:什么是二值化?

A:二值化通俗的讲就是通过两个灰度值来分割出感兴趣的区域。比如,我需要的区域很亮,我查看特征后发现,这个区域的亮度范围在 210-255之间。此时我就可以通过 threshold 算子,如: threshold(Image, Region, 210, 255) 来得到我们感兴趣的区域 Region。这里 Image是输入参数,210是控制参数,255是控制参数,Region是输出参数。

Q:什么是联通区域?

A:联通区域实际上是一个算子 connection,是这样调用的:connection (Region, ConnectedRegions) ,实际上我们通过二值化得到的区域不一定就完全是我们需要的内容,可能会存在干扰。也就是说,会有很多个区域存在,但这些区域在没有执行 connection之前是一个整体,我们只有在对他进行联通之后,才会被分割成多个对象。此时,我们就可以通过,面积,长宽,矩形相似度等特征进行进一步筛选。总的说回来,connection这个算子虽然说是联通区域,但实际上是将区域分割成多个部分。

Q:什么是特征筛选?

A:特征筛选是通过面积,长宽,矩形相似度,灰度值等条件,将我们需要的内容筛选出来。

Q:什么是腐蚀?

A:腐蚀的前提是我们要的比实际的结果要小,所以需要对目标区域进行腐蚀,让它变小。

Q:什么是膨胀?

A:膨胀跟腐蚀正好相反,因为我们要的比较大,但目标区域比较小,所以我们需要让它变大。

Q:什么是形状转换?

A:将目标区域转化为特定的形状,比如得到的区域是一个不规则的矩形,我们可以作外接矩形或是外接圆,让它更符合实际结果。

halcon视觉入门扫盲篇的更多相关文章

  1. halcon视觉入门钢珠识别

    halcon视觉入门钢珠识别 经过入门篇,我们有了基础的视觉识别知识.现在加以应用. 有如下图片: 我们需要识别图片中比较明亮的中间区域,有黑色的钢珠,我们需要知道他的位置和面积. 分析如何识别 编写 ...

  2. Halcon视觉入门芯片识别

    Halcon视觉入门芯片识别 需求 有如下图的一个摆盘,摆盘的方格中摆放芯片,一个格子中只放一个,我们需要知道每个方格中是否有芯片去指导我们将芯片放到空的方格中. 分析 通过图片分析得出 我们感兴趣的 ...

  3. java学习——入门扫盲篇

    概要 近期这几天開始进入java的学习,接触到了好多不是非常了解的概念,像JDK.JRE.JVM.GC等等这些,放到这里来进行下扫盲. java java是一种面向对象程序设计语言和java平台的总称 ...

  4. Httpd服务入门知识-http协议版本,工作机制及http服务器应用扫盲篇

    Httpd服务入门知识-http协议版本,工作机制及http服务器应用扫盲篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Internet与中国 Internet最早来源于美 ...

  5. 《IM开发新手入门一篇就够:从零开发移动端IM》

        登录 立即注册 TCP/IP详解 资讯 动态 社区 技术精选 首页   即时通讯网›专项技术区›IM开发新手入门一篇就够:从零开发移动端IM   帖子 打赏 分享 发表评论162     想开 ...

  6. 使用Python+OpenCV进行图像处理(二)| 视觉入门

    [前言]图像预处理对于整个图像处理任务来讲特别重要.如果我们没有进行恰当的预处理,无论我们有多么好的数据也很难得到理想的结果. 本篇是视觉入门系列教程的第二篇.整个视觉入门系列内容如下: 理解颜色模型 ...

  7. 转摘 MySQL扫盲篇

    一下文章摘自:http://www.jellythink.com/archives/636 MySQL扫盲篇 2014-09-15 分类:MySQL / 数据库 阅读(1412) 评论(1)  为什么 ...

  8. Asp.Net MVC2.0 Url 路由入门---实例篇

    本篇主要讲述Routing组件的作用,以及举几个实例来学习Asp.Net MVC2.0 Url路由技术. 接着上一篇开始讲,我们在Global.asax中注册一条路由后,我们的请求是怎么转到相应的Vi ...

  9. 分布式协调服务Zookeeper扫盲篇

    分布式协调服务Zookeeper扫盲篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 身为运维工程师对kubernetes(k8s)可能比较熟,那么etcd(go语言实现)分布式协 ...

随机推荐

  1. HashMap及LinkedHashMap

    HashMap是Map族中最为常用的一种,也是Java Collection Framework的重要成员.HashMap和双向链表合二为一即是LinkedHashMap.所谓LinkedHashMa ...

  2. Spring企业级程序设计 • 【第5章 Spring MVC快速入门】

    全部章节   >>>> 本章目录 5.1 Spring MVC设计概述及其框架结构 5.1.1 Spring MVC介绍 5.1.1 Spring MVC优势 5.1.2  S ...

  3. Parallel.ForEach 之 MaxDegreeOfParallelism

    参考:Max Degree of Parallelism最大并行度配置 结论: 与设置的线程数有关 有设置的并行度有关 测试如下: @@@code System.Threading.ThreadPoo ...

  4. 很漂亮的一个背景控件——ribbons.js

    写博客的人都喜欢优化自己的博客主页,博主也一样,找了一些背景控件,像canvas-nest.js等等,最终选择了ribbons.js,并基于源码,稍作了一丁点的修改,这里分享出来 (function ...

  5. RPC框架下实现文件上传到linux服务器

    一.前端使用element -ui 的upload组件 :data 表示额外传递的参数, :header 表示设置请求头参数,如,token等, action表示后台api接口的地址 二. conto ...

  6. ARP解析MAC地址的全过程(ARP的工作机制)

    以太网环境下,同一个网段的主机之间需要互相知道对方的MAC地址,才能访问. TCP/IP协议栈从上层到下层的封装过程中,第三层封装需要知道目的IP,第二层封装需要知道目的MAC. 目的IP一般由用户手 ...

  7. centos7 安装zabbix3.0 安装zabbix4.0 yum安装zabbix 国内源安装zabbix 阿里云服务器安装zabbix

    首先,此篇文章是有原因的. 刚开始也和大家一样来学习安装zabbix 奈何网上的教程和现实出现不一样的情况 在安装zabbix过程中,因为zabbix下载源是在国外,下载途中会出现终止下载的情况 tr ...

  8. 图片上传,直接在网页中显示(支持IE,谷歌,火狐浏览器)

    <!doctype html><html lang="en"> <head> <meta charset="UTF-8" ...

  9. Word合并多文档

    图片如果损坏,点击链接: https://www.toutiao.com/i6489785099528176142/ 很多时候,我们需要将两个或者多个文档的内容,放到一起,而最直接的办法就是将多个文档 ...

  10. 缓存一致性性协议MESI笔记

    概述 今天的笔记只是讲解一下MESI的概念和使用场景的介绍,MESI(Modified Exclusive Shared Or Invalid)也称为伊利诺斯协议,是一种广泛使用的支持协会策略的缓存一 ...