一、yarn产生背景

1) 源于MRv1的缺陷:扩展性受限、单点故障、难以支持MR之外的计算框架;

2) 多计算框架各自为战,数据共享困难,资源利用率低;

  MR: 离线计算框架
  Storm:实时计算框架
  Spark:内存计算框架

催生了YARN的产生

二、yarn架构

1、ResourceManager:RM

RM是一个全局的资源管理器,集群只有一个(通常生产上会做高可用,有一主一备两个RM),负责整个系统的资源管理和分配,包括处理客户端请求、启动/监控ApplicationMaster、监控nodemanager、资源的分配与调度。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Applications Manager,ASM)。

2、NodeManager:NM

整个集群中有多个,负责自己本身节点的资源管理和使用

定时向RM汇报本身节点的资源使用情况

接收并处理来自RM的各种命令:例如启动Container。Nodemanager管理着抽象容器,这些抽象容器代表着一些特定程序使用针对每个节点的资源。Nodemanager定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态(cpu和内存等资源)

处理来自AM的命令

单个节点的资源管理

3、ApplicationMaster:AM

管理YARN内运行的应用程序的每个实例。

每个应用程序对应一个:例如MR、Spark;负责应用程序的管理,为应用程序向RM申请资源(如core,memory 等)分配给task

需要跟NM通信:启动/停止task。Task和AM都是运行在container里面。

4、Container

Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示的。YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源。它是一个动态资源划分单位,是根据应用程序的需求动态生成的。

三、YARN的执行流程:

1、用户向YARN中提交应用程序,其中包括ApplicationMaster(AM)程序,启动AM的命令,用户程序等。
2、ResourceManger(RM)为该程序分配第一个Container,并与对应的NodeManger通讯,要求它在这个Container
中启动应用程序AM。
3、AM首先向RM注册,这样用户可以直接通过RM查看应用程序的运行状态,然后将为各个任务申请资源,并监控
它的运行状态,直到运行结束,重复4--7的步骤。
4、AM采用轮询的方式通过RPC协议向RM申请和领取资源。
5、一旦AM申请到资源后,便与对应的NM通讯,要求它启动任务。
6、NM为任务设置好运行环境(包括环境变量、JAR包、二进制程序等)后,将任务启动命令写到一个脚本中,并通过
运行该脚本启动任务。
7、各个任务通过某个RPC协议向AM汇报自己的状态和进度,以让AM随时掌握各个任务的运行状态,从而可以在任务
失败的时候重新启动任务。
8、应用程序运行完成后,AM向RM注销并关闭自己。

YARN学习总结之架构的更多相关文章

  1. YARN学习总结

    YARN学习总结 前言 YARN(Yet Another Resource Manage,另一种资源协调者)是hadoop-0.23版本引入的的一个新的特性,可以说它是对原有Hadoop Mapred ...

  2. ML平台_小米深度学习平台的架构与实践

    (转载:http://www.36dsj.com/archives/85383)机器学习与人工智能,相信大家已经耳熟能详,随着大规模标记数据的积累.神经网络算法的成熟以及高性能通用GPU的推广,深度学 ...

  3. Hadoop YARN学习之Hadoop框架演进历史简述

    Hadoop YARN学习之Hadoop框架演进历史简述(1) 1. Hadoop在其发展的过程中经历了多个阶段: 阶段0:Ad Hoc集群时代 标志着Hadoop的起源,集群以Ad Hoc.单用户方 ...

  4. hadoop知识点总结(三)YARN设计理念及基本架构

    YARN设计理念与基本架构 1,MRv1的局限性:扩展性差,可靠性差,资源利用率低,无法支持多种计算框架 2,YARN基本设计思想 1)基本框架对比 Hadoop1.0中,JobTracker由资源管 ...

  5. Spark on Yarn 学习(一)

    最近看到明风的关于数据挖掘平台下实用Spark和Yarn来做推荐的PPT,感觉很赞,现在基于大数据和快速计算方面技术的发展很快,随着Apache基金会上发布的一个个项目,感觉真的新技术将会不断出现在大 ...

  6. JavaWeb学习之三层架构实例(三)

    引言 通过上一篇博客JavaWeb学习之三层架构实例(二)我们基本上已经实现了对学生信息列表的增删改查操作(UI除外),但是不难看出,代码冗余度太高了,尤其是StudentDao这个类,其中的增删改查 ...

  7. (转)MyBatis框架的学习(二)——MyBatis架构与入门

    http://blog.csdn.net/yerenyuan_pku/article/details/71699515 MyBatis框架的架构 MyBatis框架的架构如下图: 下面作简要概述: S ...

  8. Hadoop YARN学习之重要术语总结(6)

    Hadoop YARN学习之重要术语总结(6) - SLA服务等级 - RM(ResourceManager) - AM(ApplicationMaster) - NM(NodeMaster) - M ...

  9. Hadoop YARN学习监控JVM和实时监控Ganglia、Ambari(5)

    Hadoop YARN学习监控JVM和实时监控Ganglia.Ambari(5) 1.0 监控ResourceManager进程Java虚拟机中堆空间的特定部分. jstat工具,在JDK的bin目录 ...

随机推荐

  1. Tensor Core技术解析(上)

    Tensor Core技术解析(上) NVIDIA在SIGGRAPH 2018上正式发布了新一代GPU架构--Turing(图灵),黄仁勋称Turing架构是自2006年CUDA GPU发明以来最大的 ...

  2. TOF摄像机可以替代Flash激光雷达吗?

    TOF摄像机可以替代Flash激光雷达吗? 一.基于ToF技术的Flash激光雷达 基本成像原理上ToF Camera与LiDAR相同,都采用飞行时间测距技术(包括利用APD或SPAD的直接测距法,和 ...

  3. cuGraph-GPU图形分析

    cuGraph-GPU图形分析 所述RAPIDS cuGraph库是GPU的集合加速图形算法,在GPU DataFrames中发现过程数据.cuGraph的愿景是使图分析无处不在,以至于用户只是根据分 ...

  4. 单核性能强悍,Core i3 这次又要“默秒全”?

    单核性能强悍,Core i3 这次又要"默秒全"? 在 Intel 历代酷睿处理器中,定位主流级的 Core i3 一直以超高性价比.低功耗.低发热的特点受到广大用户的青睐,在市场 ...

  5. 7, java数据结构和算法: 八皇后问题分析和实现 , 递归回溯

    什么是八皇后问题: 指的是,在一个8 * 8的棋盘中, 放置8个棋子, 保证这8个棋子相互之间, 不在同一行,同一列,同一斜线, 共有多少种摆法? 游戏连接: http://www.4399.com/ ...

  6. antd组件库BackTop组件设置动态背景图片的问题

    有这么一个需求,利用antd组件库中的BackTop组件的逻辑,但是自己写样式. 我的目标样式是:有两张图片,一张是normal(正常情况),一张是hover(悬停情况). 这时候就要用到css的动画 ...

  7. 【零基础学深度学习】动手学深度学习2.0--tensorboard可视化工具简单使用

    1 引言 老师让我将线性回归训练得出的loss值进行可视化,于是我使用了tensorboard将其应用到Pytorch中,用于Pytorch的可视化. 2 环境安装 本教程代码环境依赖: python ...

  8. 十二、iptables基本管理

    关闭firewalld,启动iptables服务 [root@proxy ~]# systemctl stop firewalld.service     //关闭firewalld服务器 [root ...

  9. 对话Apache Hudi VP, 洞悉数据湖的过去现在和未来

    Apache Hudi是一个开源数据湖管理平台,用于简化增量数据处理和数据管道开发,该平台可以有效地管理业务需求,例如数据生命周期,并提高数据质量.Hudi的一些常见用例是记录级的插入.更新和删除.简 ...

  10. java学习笔记1(入门级)

    Java包括三大块    JavaSE (Java标准版)    JavaEE(Java企业版)  JavaME(Java微型版) Java语言特性           简单性:例如C++支持多继承, ...