P1447能量采集

  • 定义:(i,j)表示处于(i,j)的植物的贡献

我们发现,点(i,j)与(0,0)的连线所过整点的数目为\(\gcd(i,j)\)

发现要是想记录每个点的答案并不好算。那么怎么好算呢?

我们来找一找同一直线上的所有点答案的和的关系。先不考虑答案只考虑个数。发现,寻找一个点及其倍数的个数的和更加好算。而且,因为有n和m的限制,那么向下取整的答案一定就是其本身。考虑容斥,我们只需要从大往小更新答案并将答案乘2减1加起来即可。

那么对于一个点及其倍数的答案怎么计算呢?

假设n小于m,那么对于一个小于n的数i,显然它的倍数的个数就是\((n/i)*(m/i)\),这样一来我们只需要考虑小于n的所有数的个数就能够统计n*m的所有数的答案了。至于为什么\((m-n) * m\)这一块不用考虑,是因为这里不会再有数容斥它们了,直接统计就行。

所以,答案即为

\[\displaystyle \sum_{i=1}^{n}num_i*(i*2-1)
\]

其中\(\displaystyle num_i=(n/i)*(m/i)-\sum_{i=2}^{n/i}num_i\)

在代码中一个倒序循环即可,时间复杂度线性。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cctype>
#include<cstring>
#define int long long
using namespace std;
inline int read(){
int x=0,w=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
const int maxn=1e5+10;
int ans[maxn];
signed main(){
int n=read(),m=read(),Ans=0;
if(n>m)swap(n,m);
for(int i=n;i;i--){
ans[i]=(n/i)*(m/i);
for(int j=2;j<=n/i;j++)ans[i]-=ans[i*j];
Ans+=(ans[i]*(i*2-1));
}
printf("%lld",Ans);
return 0;
}

P1447能量采集的更多相关文章

  1. 【洛谷】P1447 能量采集

    此题虽为紫,但其实在水 能量采集 题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一 ...

  2. P1447 [NOI2010]能量采集

    题目描述 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共 ...

  3. 洛谷P1447 - [NOI2010]能量采集

    Portal Description 给出\(n,m(n,m\leq10^5),\)计算\[ \sum_{i=1}^n \sum_{j=1}^m (2gcd(i,j)-1)\] Solution 简单 ...

  4. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  5. noi2010 能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB Submit: 3068  Solved: 1820 [Submit][Sta ...

  6. 2005: [Noi2010]能量采集 - BZOJ

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  7. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  8. 【BZOJ 2005】[Noi2010]能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  9. 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)

    能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...

随机推荐

  1. 谈谈stream的运行原理

    害,别误会,我这里说的stream不是流式编程,不是大数据处理框架.我这里说的是stream指的是jdk中的一个开发工具包stream. 该工具包在jdk8中出现,可以说已经是冷饭了,为何还要你说?只 ...

  2. SpringBoot2 参数管理实践,入参出参与校验

    一.参数管理 在编程系统中,为了能写出良好的代码,会根据是各种设计模式.原则.约束等去规范代码,从而提高代码的可读性.复用性.可修改,实际上个人觉得,如果写出的代码很好,即别人修改也无法破坏原作者的思 ...

  3. oracle数据库归档日志量陡增分析

    ============= oracle数据库archivelog暴增分析 ==================== 前言 归档量突然增长到981G/天,导致归档目录使用率告警 归档日志量异常暴增会导 ...

  4. js02

    一.<thead></thead>,<tbody></tbody>:为了使表头和表格内容分开设置样式 1.tbody里边有一个rows.length,获 ...

  5. 「模拟8.21」山洞(矩阵优化DP)

    暴力: 正解: 考虑循环矩阵,f[i][j]表示从i点到j点的方案数 我们发现n很小,我们预处理出n次的f[i][j] 然后在矩阵快速幂中,我们要从当前的f[i][j]*f[j][k]-->fi ...

  6. windows+R键的应用

    windows+R:然后输入以下几个命令 1.cmd :用于Windows命令行操作,比如:ping某个网络,看看是不是通的,或者directory等等Windows命令行操作 2.远程桌面连接:ms ...

  7. DNS 解析过程

    DNS 是应用层协议,用于将域名转换成 IP 地址. 1. 解析过程 DNS 的核心系统是一个三层的树状.分布式服务,基本对应域名的结构. 根域名服务器:管理顶级域名服务器,返回 com.net.cn ...

  8. 用python+pyqt5语言编写的扫雷小游戏软件

    github源码地址:https://github.com/richenyunqi/Mine-game ,撒娇打滚求star哦~~ღ( ´・ᴗ・` )比心 扫雷主界面模块 整个扫雷界面使用大量的白色方 ...

  9. 在Excel中当遇到多个对象的目标值都不同时,如何快速设置条件格式突出未达标的对象

    1.选择实际值的一个单元格,选择条件格式,新建规则,选择图中选项. 2.这里选择大于,然后选择对比的单元格.选择需要的格式确定.(因为要对比的目标值不同,所以需要给单元格去掉绝对引用,也就是$符号). ...

  10. upload-labs通关记录

    upload-labs通关记录 一句话木马解读 一般的解题步骤 或者可以直接用字典爆破一下 https://github.com/TheKingOfDuck/fuzzDicts/blob/master ...