前置芝士:斜率优化  
剥下这道题的外壳,让它变为一道裸的斜率优化。
很容易想到状态,但复杂度显然过不去,也没有单调性,只能自己创造。

$$c[i] = t - sum[i],sum[i] = \sum_{j = 1} ^{i} d[j]$$
如果出发时间为t,那么 t - c[i] 即是等待时间
将 c 数组排序后,带走其中一个即可以带走旁边几个,那就是变成了连续选择,c排序后有了单调性,那么转移式就成了
dp[k][i]表示第 k 个饲养员,到 i 这个地方取猫的最小代价
$$dp[k][i] = min(dp[k - 1][j] + \sum_{t = j + 1}^ic[i] - c[t])(j \le i )$$
发现之中有前缀和

$$S_i = \sum_{t = 1}^ic[t]$$
那么化简式子后就成了一个标准的斜率优化
$$dp[k - 1][j] + S_j = c[i] * j + dp[k][i] - c[i] * i$$

具体实现不懂的

#include<bits/stdc++.h>

using namespace std;
#define N 100001
long long f[101][N];
struct node {
int k,las;
}p[N * 101];
int l = 1,r = 0;
int n,m,q;
long long sumd[N];
struct cats {
long long a,sum;
}c[N];
bool cmp(cats x,cats y) {
return x.a < y.a;
}
inline bool checkhead(int x1,int x2,int pos,int peo) {
if(l + 1 > r) return false;
peo--;
if(f[peo][x2] - f[peo][x1] + c[x2].sum - c[x1].sum <= (x2 - x1) * c[pos].a) return true;
return false;
}
inline bool check(int x1,int x2,int pos,int peo) {
if(r - 1 < l) return false;
peo--;
if((f[peo][x2] - f[peo][x1] + c[x2].sum - c[x1].sum) * (pos - x2) <= (f[peo][pos] - f[peo][x2] + c[pos].sum - c[x2].sum) * (x2 - x1)) {
return true;
}
return false;
}
int main() {
scanf("%d %d %d", &n, &m, &q);
for(int i = 2;i <= n;i++) {
scanf("%d", &sumd[i]);
sumd[i] += sumd[i - 1];
}
for(int i = 1;i <= m;i++) {
int pos,t;
scanf("%d %d", &pos, &t);
c[i].a = t - sumd[pos];
}
int cnt = 0;
sort(c + 1,c + m + 1,cmp);
for(int i = 1;i <= m;i++) {
c[i].sum = c[i - 1].sum + c[i].a;
}
for(int i = 1;i <= m;i++) {
f[1][i] = i * c[i].a - c[i].sum;
}
f[0][0] = 0;
for(int i = 2;i <= q;i++) {
l = 1,r = 0;
p[++r].k = 0;
c[0].a = 0,c[0].sum = 0;
for(int j = 1;j <= m;j++) {
while(l <= r && checkhead(p[l].k,p[l + 1].k,j,i)) {
l++;
}
int k = p[l].k;
f[i][j] = f[i - 1][k] + c[k].sum + c[j].a * j - c[j].a * k - c[j].sum;
while(l <= r && check(p[r].k,p[r - 1].k,j,i)) {
r--;
}
p[++r].k = j;
}
}
cout<<f[q][m];
return 0;
}

题解 CF311B Cats Transport的更多相关文章

  1. CF311B Cats Transport 斜率优化DP

    题面:CF311B Cats Transport 题解: 首先我们观察到山与距离其实是没有什么用的,因为对于任意一只猫,我们都可以直接算出如果有一个人要恰好接走它,需要在哪一时刻出发,我们设第i只猫对 ...

  2. 【题解】Cats Transport (斜率优化+单调队列)

    [题解]Cats Transport (斜率优化+单调队列) # When Who Problem Lang Verdict Time Memory 55331572 Jun/09/2019 19:1 ...

  3. CF311B Cats Transport

    题意 Zxr960115 is owner of a large farm. He feeds m cute cats and employs p feeders. There's a straigh ...

  4. CF311B Cats Transport(斜率优化)

    题目描述 Zxr960115 是一个大农场主.他养了m只可爱的猫子,雇佣了p个铲屎官.这里有一条又直又长的道路穿过了农场,有n个山丘坐落在道路周围,编号自左往右从1到n.山丘i与山丘i-1的距离是Di ...

  5. $CF311B\ Cats\ Transport$ 斜率优化

    AcWing Description Sol 设f[i][j]表示前i个饲养员接走前j只猫咪的最小等待时间. 要接到j猫咪,饲养员的最早出发时间是可求的,设为d: $ d[j]=Tj-\sum_{k= ...

  6. CF-311B Cats Transport(斜率优化DP)

    题目链接 题目描述 小S是农场主,他养了 \(M\)只猫,雇了 \(P\) 位饲养员. 农场中有一条笔直的路,路边有 \(N\) 座山,从 \(1\) 到 \(N\)编号. 第 \(i\) 座山与第 ...

  7. 题解-Cats Transport

    题解-Cats Transport Cats Transport 有 \(n\) 个山丘,\(m\) 只猫子,\(p\) 只铲屎官.第 \(i-1\) 个山丘到第 \(i\) 个山丘的距离是 \(d_ ...

  8. 笔记-Cats Transport<已写题解>

    笔记-Cats Transport Cats Transport 令 \(D_i=\sum_{j=1}^id_i\),\(T_i=t_i-D_{h_i}\). 为 \(T_i\) 从小到大排序,令 \ ...

  9. 一本通1609【例 4】Cats Transport

    1609:[例 4]Cats Transport 时间限制: 1000 ms         内存限制: 524288 KB sol:非常偷懒的截图了事 注意:只能猫等人,不能人等猫 对于每只猫,我们 ...

随机推荐

  1. Nginx 配置实例-配置高可用

    Nginx 配置实例-配置高可用 1. 实现效果 2. 两台机器 nginx 的安装 2.1 192.168.25.120 中 nginx 的安装 2.1.1 安装 pcre 依赖 2.1.2 安装其 ...

  2. Kaggle上的犬种识别(ImageNet Dogs)

    Kaggle上的犬种识别(ImageNet Dogs) Dog Breed Identification (ImageNet Dogs) on Kaggle 在本节中,将解决在Kaggle竞赛中的犬种 ...

  3. 如何使用Nsight Compute?

    如何使用Nsight Compute? 下图command Line Argunments是指训练或测试命令,Linux下直接用测试或训练命令

  4. 【NX二次开发】根据部件名返回部件tag,UF_PART_ask_part_tag

    注意UF_PART_ask_part_tag的参数输入带扩展名的部件名或者不带扩展名的部件名,不允许输入全路径名,否则会出错,例如下面这例子.部件在C盘"C:\\temp\\B01.prt ...

  5. Python编解码问题与文本文件处理

    编解码器 在字符与字节之间的转换过程称为编解码,Python自带了超过100种编解码器,比如: ascii(英文体系) gb2312(中文体系) utf-8(全球通用) latin1 utf-16 编 ...

  6. Quill基本使用和配置 - DevUI

    DevUI 是一款面向企业中后台产品的开源前端解决方案,它倡导沉浸.灵活.至简的设计价值观,提倡设计者为真实的需求服务,为多数人的设计,拒绝哗众取宠.取悦眼球的设计.如果你正在开发 ToB 的工具类产 ...

  7. Redis哨兵的配置和原理

    哨兵 在一个典型的一主多从的Redis系统中,当主数据库遇到异常中断服务后,需要手动选择一个从数据库升级为主数据库,整个过程需要人工介入,难以自动化. Redis2.8提供了哨兵2.0(2.6提供了1 ...

  8. 【模拟7.16】通讯(tarjan缩点加拓扑排序)

    这题确实水,纯板子,考试意外出错,只拿了暴力分QAQ tarjan缩点加上拓扑排序,注意这里求最短路径时不能用最小生成树 因为是单向边,不然就可能不是一个联通图了.... 1 #include< ...

  9. 【题解】codeforces 467C George and Job dp

    题目描述 新款手机 iTone6 近期上市,George 很想买一只.不幸地,George 没有足够的钱,所以 George 打算当一名程序猿去打工.现在George遇到了一个问题. 给出一组有 n ...

  10. cmake使用笔记,一些常用的命令

    我的工程目录如下: │ CMakeLists.txt ├─cmake_tutorial │ CMakeLists.txt │ cmake_tutorial.cpp │ cmake_tutorial.h ...