Redis:Java链接redis单节点千万级别数据 写入,读取 性能测试
本文是对Redis 单节点,针对不同的数据类型,做插入行测试. 数据总条数为:10058624
环境说明:
Redis 未做任何优化, 单节点 (服务器上, 内存64G).
数据量 : 10058624条 (大约一千零6万条数据,本地机器运行读取插入操作.)
数据大小 : 1093.56MB (1.1G)
插入数据类型为 String 类型
Jedis插入
public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
InputStream fis = null;
fis = new BufferedInputStream(new FileInputStream(PATH));
//根据数据流初始化一个DBFReader实例,用来读取DBF文件信息
DBFReader reader = new DBFReader(fis); Object[] rowValues;
int index = 0; while ((rowValues = reader.nextRecord()) != null){
if (null != rowValues && rowValues.length > 0) {
index ++;
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
jedis.set("index" + SEPARATOR +index, Array2String(rowValues));
}
}
jedis.close();
}
假设插入速度为 2800条/s , 那么插入10058624 条数据需要用时: 3593秒 . ( 59.88 min , 约 1小时. )!!!!!
Pipelining插入
public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
Pipeline pipelined = jedis.pipelined(); InputStream fis = null;
fis = new BufferedInputStream(new FileInputStream(PATH));
//根据数据流初始化一个DBFReader实例,用来读取DBF文件信息
DBFReader reader = new DBFReader(fis); Object[] rowValues;
int index = 0; while ((rowValues = reader.nextRecord()) != null){
if (null != rowValues && rowValues.length > 0) {
index ++;
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
pipelined.set("index"+ SEPARATOR +index,Array2String(rowValues));
}
}
pipelined.sync();
jedis.close();
}
处理数据完成 ==> 插入数据总条数 size : 10058624 total use : 62 s , 处理速度: 162235 条/s
和传统方式相比,性能差将近58 倍!!!!!!!!
读取全部 String 类型数据
Jedis读取
public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
long start = System.currentTimeMillis(); int num = 10058624;
for (int index = 1; index < num; index++){
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
String key = KEYPREFIX + SEPARATOR + index;
String value = jedis.get(key);
}
jedis.close();
}
假设插入速度为 5000条/s , 那么插入10058624 条数据需要用时: 2012 秒 . ( 33min 30 s . )
Pipelining读取
public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
Pipeline pipelined = jedis.pipelined(); long start = System.currentTimeMillis();
HashMap<String, Response<String>> intrmMap = new HashMap<String, Response<String>>(); int num = 10058624;
for (int index = 1; index < num; index++){
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
String key = KEYPREFIX + SEPARATOR + index;
intrmMap.put(key, pipelined.get(key));
}
pipelined.sync();
jedis.close();
}
由于是异步操作, 所以上面的结果并不准.最终获取数据时间
batchGetUsePipeline : 处理数据完成 ==> 读取数据总条数 size : 10058623 total use : 48 s , 处理速度: 209554 条/s
和传统方式相比,性能差将近 41.92 倍!!!!!!!!
插入数据类型为 List 类型
Jedis插入
public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
InputStream fis = null;
fis = new BufferedInputStream(new FileInputStream(PATH));
//根据数据流初始化一个DBFReader实例,用来读取DBF文件信息
DBFReader reader = new DBFReader(fis); Object[] rowValues;
int index = 0; while ((rowValues = reader.nextRecord()) != null){
if (null != rowValues && rowValues.length > 0) {
index ++;
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
jedis.lpush("index", JacksonUtils.toJSon(rowValues));
}
}
jedis.close();
}
假设插入速度为 2600条/s , 那么插入10058624 条数据需要用时: 3869 秒 . ( 64.5 min , 约 1小时零5分钟. )
Pipeline 插入
public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
Pipeline pipelined = jedis.pipelined(); InputStream fis = null;
fis = new BufferedInputStream(new FileInputStream(PATH));
//根据数据流初始化一个DBFReader实例,用来读取DBF文件信息
DBFReader reader = new DBFReader(fis); Object[] rowValues;
int index = 0; while ((rowValues = reader.nextRecord()) != null){
if (null != rowValues && rowValues.length > 0) {
index ++;
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
pipelined.lpush("index", JacksonUtils.toJSon(rowValues));
}
}
pipelined.sync();
jedis.close();
}
处理数据完成 ==> 插入数据总条数 size : 10058624 total use : 62 s , 处理速度: 162235 条/s
和传统方式对比 性能相差 62.5倍
读取全部 List 类型数据
Jedis读取
public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
long start = System.currentTimeMillis(); List<String> list = jedis.lrange("index", 0, 10058624);
jedis.close(); long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 读取数据总条数 : "+list.size()+" 耗时 : "+ start + " s , 处理速度 : " +(list.size()/((end-start)/1000))+" 条 / s");
}
读取数据总条数 size : 10058624 total use : 15 s , 处理速度: 670574 条/s
Pipline读取
public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
long start = System.currentTimeMillis();
Pipeline pipelined = jedis.pipelined(); Response<List<String>> list = pipelined.lrange("index", 0, 10058624); pipelined.sync();
jedis.close(); long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 读取数据总条数 : "+list.size()+" 耗时 : "+ start + " s , 处理速度 : " +(list.size()/((end-start)/1000))+" 条 / s");
}
处理数据完成 ==> 读取数据总条数 size : 10058624 total use : 12 s , 处理速度: 838218 条/s
pipline的数据读取方式确实会快很多, 但是内存存在消耗
文章转载至:https://blog.csdn.net/zhanglong_4444/article/details/87921162
Redis:Java链接redis单节点千万级别数据 写入,读取 性能测试的更多相关文章
- Redis 单节点百万级别数据 读取 性能测试.
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 这里先进行造数据,向redis中写入五百万条数据,具体方式有如下三种: 方法一:(Lua 脚本) vim ...
- Java链接Redis时出现 “ERR Client sent AUTH, but no password is set” 异常的原因及解决办法
Java链接Redis时出现 "ERR Client sent AUTH, but no password is set" 异常的原因及解决办法 [错误提示] redis.clie ...
- Java链接Redis时出现 “ERR Client sent AUTH, but no password is set”
Java链接Redis时出现 “ERR Client sent AUTH, but no password is set” 异常的原因及解决办法. [错误提示] redis.clients.jedis ...
- mysql数据库千万级别数据的查询优化和分页测试
原文地址:原创 mysql数据库千万级别数据的查询优化和分页测试作者:于堡舰 本文为本人最近利用几个小时才分析总结出的原创文章,希望大家转载,但是要注明出处 http://blog.sina.com. ...
- java之5分钟插入千万条数据
虽说不一定5分钟就插入完毕,因为取决去所插入的字段,如果字段过多会稍微慢点,但不至于太慢.10分钟内基本能看到结果. 之前我尝试用多线程来实现数据插入(百万条数据),半个多小时才二十多万条数据. 线程 ...
- flink04 -----1 kafkaSource 2. kafkaSource的偏移量的存储位置 3 将kafka中的数据写入redis中去 4 将kafka中的数据写入mysql中去
1. kafkaSource 见官方文档 2. kafkaSource的偏移量的存储位置 默认存在kafka的特殊topic中,但也可以设置参数让其不存在kafka的特殊topic中 3 将k ...
- JAVA使用POI如何导出百万级别数据(转)
https://blog.csdn.net/happyljw/article/details/52809244 用过POI的人都知道,在POI以前的版本中并不支持大数据量的处理,如果数据量过多还会 ...
- JAVA使用POI如何导出百万级别数据
用过POI的人都知道,在POI以前的版本中并不支持大数据量的处理,如果数据量过多还会常报OOM错误,这时候调整JVM的配置参数也不是一个好对策(注:jdk在32位系统中支持的内存不能超过2个G,而在6 ...
- JAVA使用POI如何导出百万级别数据(转载)
用过POI的人都知道,在POI以前的版本中并不支持大数据量的处理,如果数据量过多还会常报OOM错误,这时候调整JVM的配置参数也不是一个好对策(注:jdk在32位系统中支持的内存不能超过2个G,而在6 ...
随机推荐
- Linux_计划任务
[Centos7.4] !!!测试环境我们首关闭防火墙和selinux:免得后面的测试会出现问题 [root@localhost ~]# systemctl stop firewalld [root@ ...
- mysql默认值
1.创建表时添加默认值 语法: <字段名><类型><默认值> 实例: MySQL [wordpress]> create table ly_content( ...
- zabbix监控之邮件报警通知
zabbix官网的操作指南:https://www.zabbix.com/documentation/4.0/zh/manual 首先我们需要创建一个需要被监控的主机,并设置相应的监控项.当监控项收集 ...
- Lua _G
1.全局变量的原形 在Lua中,要声明全局变量很简单,那就是定义变量的时候,前面不要加上local. 这个神秘的全局变量,其实本质上也是一个table,它把我们创建的全局变量都保存到一个table里了 ...
- Google I/O 2021 Android精华内容
Google I/O 2021结束了, 都有什么精彩内容呢? Android部分的Playlist附上: Android & Play at Google I/O 2021 Developer ...
- system verilog内建数据类型
- unity中使用Highlighting System v4.0插件给物体添加高亮
插件:Highlighting System v4.0 操作:在摄像机上挂上HighlightingRenderer脚本 脚本目录在\Assets\Plugins\HighlightingSystem ...
- 四:net core(.NET 6)使用Filter过滤器拦截webapi方法
Filter的基本用法 代码在最下方 使用filter过滤器,来实现拦截接口信息.咱们先新建一个项目,在原有的webapi上面,选择添加项目,添加一个类库项目: 我起个名字,就叫 Wsk.Core.F ...
- Python+Selenium - 文件上传
如下图,从系统点击上传功能,打开到这种如下图页面的才适合本文介绍的处理方法 处理方法一 pywinauto库 优点:可以选择多个文件,路径中有中文也支持 缺点:只能Windows平台使用 安装 pip ...
- Python神经网络集成技术Guide指南
Python神经网络集成技术Guide指南 本指南将介绍如何加载一个神经网络集成系统并从Python运行推断. 提示 所有框架的神经网络集成系统运行时接口都是相同的,因此本指南适用于所有受支持框架(包 ...