Flags:
--port=8500 int32 Port to listen on for gRPC API
--grpc_socket_path="" string If non-empty, listen to a UNIX socket for gRPC API on the given path. Can be either relative or absolute path.
--rest_api_port=0 int32 Port to listen on for HTTP/REST API. If set to zero HTTP/REST API will not be exported. This port must be different than the one specified in --port.
--rest_api_num_threads=16 int32 Number of threads for HTTP/REST API processing. If not set, will be auto set based on number of CPUs.
--rest_api_timeout_in_ms=30000 int32 Timeout for HTTP/REST API calls.
--enable_batching=false bool enable batching
--batching_parameters_file="" string If non-empty, read an ascii BatchingParameters protobuf from the supplied file name and use the contained values instead of the defaults.
--model_config_file="" string If non-empty, read an ascii ModelServerConfig protobuf from the supplied file name, and serve the models in that file. This config file can be used to specify multiple models to serve and other advanced parameters including non-default version policy. (If used, --model_name, --model_base_path are ignored.)
--model_name="default" string name of model (ignored if --model_config_file flag is set)
--model_base_path="" string path to export (ignored if --model_config_file flag is set, otherwise required)
--max_num_load_retries=5 int32 maximum number of times it retries loading a model after the first failure, before giving up. If set to 0, a load is attempted only once. Default: 5
--load_retry_interval_micros=60000000 int64 The interval, in microseconds, between each servable load retry. If set negative, it doesn't wait. Default: 1 minute
--file_system_poll_wait_seconds=1 int32 Interval in seconds between each poll of the filesystem for new model version. If set to zero poll will be exactly done once and not periodically. Setting this to negative value will disable polling entirely causing ModelServer to indefinitely wait for a new model at startup. Negative values are reserved for testing purposes only.
--flush_filesystem_caches=true bool If true (the default), filesystem caches will be flushed after the initial load of all servables, and after each subsequent individual servable reload (if the number of load threads is 1). This reduces memory consumption of the model server, at the potential cost of cache misses if model files are accessed after servables are loaded.
--tensorflow_session_parallelism=0 int64 Number of threads to use for running a Tensorflow session. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
--tensorflow_intra_op_parallelism=0 int64 Number of threads to use to parallelize the executionof an individual op. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
--tensorflow_inter_op_parallelism=0 int64 Controls the number of operators that can be executed simultaneously. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
--ssl_config_file="" string If non-empty, read an ascii SSLConfig protobuf from the supplied file name and set up a secure gRPC channel
--platform_config_file="" string If non-empty, read an ascii PlatformConfigMap protobuf from the supplied file name, and use that platform config instead of the Tensorflow platform. (If used, --enable_batching is ignored.)
--per_process_gpu_memory_fraction=0.000000 float Fraction that each process occupies of the GPU memory space the value is between 0.0 and 1.0 (with 0.0 as the default) If 1.0, the server will allocate all the memory when the server starts, If 0.0, Tensorflow will automatically select a value.
--saved_model_tags="serve" string Comma-separated set of tags corresponding to the meta graph def to load from SavedModel.
--grpc_channel_arguments="" string A comma separated list of arguments to be passed to the grpc server. (e.g. grpc.max_connection_age_ms=2000)
--enable_model_warmup=true bool Enables model warmup, which triggers lazy initializations (such as TF optimizations) at load time, to reduce first request latency.
--version=false bool Display version
--monitoring_config_file="" string If non-empty, read an ascii MonitoringConfig protobuf from the supplied file name

  

Tensorflow Serving 参数的更多相关文章

  1. 学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集

    TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型 ...

  2. tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署

    TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...

  3. tensorflow serving 之minist_saved_model.py解读

    最近在学习tensorflow serving,但是就这样平淡看代码可能觉得不能真正思考,就想着写个文章看看,自己写给自己的,就像自己对着镜子演讲一样,写个文章也像自己给自己讲课,这样思考的比较深,学 ...

  4. Tensorflow Serving 模型部署和服务

    http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/233614 ...

  5. tensorflow serving 编写配置文件platform_config_file的方法

    1.安装grpc gRPC 的安装: $ pip install grpcio 安装 ProtoBuf 相关的 python 依赖库: $ pip install protobuf 安装 python ...

  6. 基于TensorFlow Serving的深度学习在线预估

    一.前言 随着深度学习在图像.语言.广告点击率预估等各个领域不断发展,很多团队开始探索深度学习技术在业务层面的实践与应用.而在广告CTR预估方面,新模型也是层出不穷: Wide and Deep[1] ...

  7. 139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型

    昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repos ...

  8. TensorFlow Serving简介

    一.TensorFlow Serving简介 TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活.性能高.可用于生产环境. TensorFlow Ser ...

  9. docker部署tensorflow serving以及模型替换

    Using TensorFlow Serving with Docker 1.Ubuntu16.04下安装docker ce 1-1:卸载旧版本的docker sudo apt-get remove ...

随机推荐

  1. Elasticsearch简介、倒排索引、文档基本操作、分词器

    lucene.Solr.Elasticsearch 1.倒排序索引 2.Lucene是类库 3.solr基于lucene 4.ES基于lucene 一.Elasticsearch 核心术语 特点: 1 ...

  2. JVM基础入门

    内存模型 我理解的jvm: 个人理解的jvm流程: .java反编译为.class文件 经类加载器到上图的内存模型 方法区:存静态 常量区(String在里面) 本地栈区:调本地服务其它库的方法 计数 ...

  3. CentOS7上安装伪分布式Hadoop

    1.下载安装包 下载hadoop安装包 官网地址:https://hadoop.apache.org/releases.html 版本:建议使用hadoop-2.7.3.tar.gz 系统环境:Cen ...

  4. 微信小程序(五)-常见组件(标签)

    常见组件(标签) https://developers.weixin.qq.com/miniprogram/dev/component/ 1.view 代替以前的div标签 2.text 1.文本标签 ...

  5. Redis基本数据结构之ZSet

    1.1Zset(有序集合) Zset保留了集合不能有重复成员的特性,但不同的是,有序集合中的元素可以排序.但是它和列表使用索引下标作为排序依据不同的是,它给每个元素设置一个分数(score)作为排序的 ...

  6. 元类、orm

    目录 一.内置函数exec 二.元类 1. 什么是元类 2. 元类的作用 3. 创建类的两种方法 4. 怎么自定义创建元类 三.ORM 1. ORM中可能会遇到的问题 2. ORM中元类需要解决的问题 ...

  7. Google单元测试框架gtest之官方sample笔记2--类型参数测试

    gtest 提供了类型参数化测试方案,可以测试不同类型的数据接口,比如模板测试.可以定义参数类型列表,按照列表定义的类型,每个测试case都执行一遍. 本例中,定义了2种计算素数的类,一个是实时计算, ...

  8. [UNP] TCP 多进程服务器

    UNP Part-2: Chapter 5. TCP Client/Server Example 的读书笔记. 阅读本文前,建议先阅读多线程服务器的实现,熟悉常见的 TCP 网络通信 API 的基本使 ...

  9. [UNP] IO 复用

    UNP Part-2: Chapter 6. I/O Multiplexing: The select and poll Functions 的读书笔记. 在 这篇博客 的最后,我们对文章中的服务器- ...

  10. MMA CTF 2nd 2016-greeting

    目录 MMA CTF 2nd 2016-greeting 总结 题目分析 checksec 函数分析 漏洞点 知识点 利用思路 EXP 完整Exp MMA CTF 2nd 2016-greeting ...