Flags:
--port=8500 int32 Port to listen on for gRPC API
--grpc_socket_path="" string If non-empty, listen to a UNIX socket for gRPC API on the given path. Can be either relative or absolute path.
--rest_api_port=0 int32 Port to listen on for HTTP/REST API. If set to zero HTTP/REST API will not be exported. This port must be different than the one specified in --port.
--rest_api_num_threads=16 int32 Number of threads for HTTP/REST API processing. If not set, will be auto set based on number of CPUs.
--rest_api_timeout_in_ms=30000 int32 Timeout for HTTP/REST API calls.
--enable_batching=false bool enable batching
--batching_parameters_file="" string If non-empty, read an ascii BatchingParameters protobuf from the supplied file name and use the contained values instead of the defaults.
--model_config_file="" string If non-empty, read an ascii ModelServerConfig protobuf from the supplied file name, and serve the models in that file. This config file can be used to specify multiple models to serve and other advanced parameters including non-default version policy. (If used, --model_name, --model_base_path are ignored.)
--model_name="default" string name of model (ignored if --model_config_file flag is set)
--model_base_path="" string path to export (ignored if --model_config_file flag is set, otherwise required)
--max_num_load_retries=5 int32 maximum number of times it retries loading a model after the first failure, before giving up. If set to 0, a load is attempted only once. Default: 5
--load_retry_interval_micros=60000000 int64 The interval, in microseconds, between each servable load retry. If set negative, it doesn't wait. Default: 1 minute
--file_system_poll_wait_seconds=1 int32 Interval in seconds between each poll of the filesystem for new model version. If set to zero poll will be exactly done once and not periodically. Setting this to negative value will disable polling entirely causing ModelServer to indefinitely wait for a new model at startup. Negative values are reserved for testing purposes only.
--flush_filesystem_caches=true bool If true (the default), filesystem caches will be flushed after the initial load of all servables, and after each subsequent individual servable reload (if the number of load threads is 1). This reduces memory consumption of the model server, at the potential cost of cache misses if model files are accessed after servables are loaded.
--tensorflow_session_parallelism=0 int64 Number of threads to use for running a Tensorflow session. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
--tensorflow_intra_op_parallelism=0 int64 Number of threads to use to parallelize the executionof an individual op. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
--tensorflow_inter_op_parallelism=0 int64 Controls the number of operators that can be executed simultaneously. Auto-configured by default.Note that this option is ignored if --platform_config_file is non-empty.
--ssl_config_file="" string If non-empty, read an ascii SSLConfig protobuf from the supplied file name and set up a secure gRPC channel
--platform_config_file="" string If non-empty, read an ascii PlatformConfigMap protobuf from the supplied file name, and use that platform config instead of the Tensorflow platform. (If used, --enable_batching is ignored.)
--per_process_gpu_memory_fraction=0.000000 float Fraction that each process occupies of the GPU memory space the value is between 0.0 and 1.0 (with 0.0 as the default) If 1.0, the server will allocate all the memory when the server starts, If 0.0, Tensorflow will automatically select a value.
--saved_model_tags="serve" string Comma-separated set of tags corresponding to the meta graph def to load from SavedModel.
--grpc_channel_arguments="" string A comma separated list of arguments to be passed to the grpc server. (e.g. grpc.max_connection_age_ms=2000)
--enable_model_warmup=true bool Enables model warmup, which triggers lazy initializations (such as TF optimizations) at load time, to reduce first request latency.
--version=false bool Display version
--monitoring_config_file="" string If non-empty, read an ascii MonitoringConfig protobuf from the supplied file name

  

Tensorflow Serving 参数的更多相关文章

  1. 学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集

    TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型 ...

  2. tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署

    TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...

  3. tensorflow serving 之minist_saved_model.py解读

    最近在学习tensorflow serving,但是就这样平淡看代码可能觉得不能真正思考,就想着写个文章看看,自己写给自己的,就像自己对着镜子演讲一样,写个文章也像自己给自己讲课,这样思考的比较深,学 ...

  4. Tensorflow Serving 模型部署和服务

    http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/233614 ...

  5. tensorflow serving 编写配置文件platform_config_file的方法

    1.安装grpc gRPC 的安装: $ pip install grpcio 安装 ProtoBuf 相关的 python 依赖库: $ pip install protobuf 安装 python ...

  6. 基于TensorFlow Serving的深度学习在线预估

    一.前言 随着深度学习在图像.语言.广告点击率预估等各个领域不断发展,很多团队开始探索深度学习技术在业务层面的实践与应用.而在广告CTR预估方面,新模型也是层出不穷: Wide and Deep[1] ...

  7. 139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型

    昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repos ...

  8. TensorFlow Serving简介

    一.TensorFlow Serving简介 TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活.性能高.可用于生产环境. TensorFlow Ser ...

  9. docker部署tensorflow serving以及模型替换

    Using TensorFlow Serving with Docker 1.Ubuntu16.04下安装docker ce 1-1:卸载旧版本的docker sudo apt-get remove ...

随机推荐

  1. SpringCloud Stream整合RabbitMQ3.5.0

    前言 点击进入Spring官网文档 本文章为单体项目,将消费者和生产者写在同一个项目中,介意者不用向下看了. 本文介绍三种应用方式: 1:普通整合RabbitMQ 2:消息分区 3:按条件消费(多个消 ...

  2. 微信小程序切换标签改变样式

    微信小程序切换标签改变样式 wxml <!--顶部导航栏--> <view class="swiper-tab"> <view class=" ...

  3. Mac忘记密码

    1.启动电脑的时候,按住 Command+R,直到苹果的图标出现,松开,等待进入... 2.直接点击菜单栏上有个功能里面有 "终端" 功能,点击打开. 3.在终端页面里输入---& ...

  4. 理解C#泛型运作原理

    前言  我们都知道泛型在C#的重要性,泛型是OOP语言中三大特征的多态的最重要的体现,几乎泛型撑起了整个.NET框架,在讲泛型之前,我们可以抛出一个问题,我们现在需要一个可扩容的数组类,且满足所有类型 ...

  5. Java 面向对象 04

    面向对象·四级 多态的概述及其代码实现 * A:多态(polymorphic)概述 * 事物存在的多种形态 * B:多态前提 * a:要有继承关系 * b:要有方法重写 * c: 要有父类引用指向子类 ...

  6. Android+Chrome 真机调试H5页面实践

    前言 使用weinre在真机上调试H5页面,有一个突出的缺点,就是无法调试真机上的样式,真机上页面动态创建的dom在weinre的Elements面板显示不出来,所以调试真机上的页面样式也就无从谈起. ...

  7. JVM笔记 -- JVM的发展以及基于栈的指令集架构

    2011年,JDK7发布,1.7u4中,开始启用新的垃圾回收器G1(但是不是默认). 2017年,发布JDK9,G1成为默认GC,代替CMS.(一般公司使用jdk8的时候,会通过参数,指定GC为G1) ...

  8. 一. MySQL基础语法

    1. 案例库表 2. DQL语言(数据查询) 2.1 基础查询 -- 进入指定的库 USE myemployees; DESC employees; -- 使用SELECT查询字段 # 1.查询表中的 ...

  9. [HEOI2014] 人人尽说江南好

    [HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...

  10. 习题3_08循环小数(JAVA语言)

    package 第三章习题; import java.util.Arrays; import java.util.Scanner; /*  * 输入整数a和b(0<=a<=3000,1&l ...