Leaf——美团点评分布式ID生成系统

前言

在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的自增ID显然不能满足需求;特别一点的如订单、骑手、优惠券也都需要有唯一ID做标识。此时一个能够生成全局唯一ID的系统是非常必要的。概括下来,那业务系统对ID号的要求有哪些呢?

  1. 全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。
  2. 趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。
  3. 单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。
  4. 信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。

上述123对应三类不同的场景,3和4需求还是互斥的,无法使用同一个方案满足。

同时除了对ID号码自身的要求,业务还对ID号生成系统的可用性要求极高,想象一下,如果ID生成系统瘫痪,整个美团点评支付、优惠券发券、骑手派单等关键动作都无法执行,这就会带来一场灾难。

由此总结下一个ID生成系统应该做到如下几点:

  1. 平均延迟和TP999延迟都要尽可能低;
  2. 可用性5个9;
  3. 高QPS。

在实际的应用中,我们经常会遇到id生成问题。其中最基本的就是要保证id的唯一性。常见解决方案如下。

  1. 微软公司通用唯一识别码(UUID)
  2. Twitter公司雪花算法(SnowFlake)
  3. 基于数据库的id自增

其中,使用数据库进行id自增是在单机应用中使用最普遍的id生成方式,它能够完全保证id的不重复。但id的自增并不是在任何数据库都支持,这就给数据库迁移造成了麻烦。并且,数据库的解决方案在分布式环境下的只能保证单个数据库作为生产数据库,存在单点故障的危险。

而微软的UUID显然是一种极佳的解决方案,它由当前日期时间、时钟序列、全局唯一的机器标识号来生成一段无序的字符串id。 它的确实现了ID的唯一性但肉眼可辨识度比较差。虽然满足了我们的基本要求,但实际很多的生产中我们还有id根据时间进行递增的进阶要求。这显然是无法实现的。

所以,下面我们就讲讲Twitter公司的雪花算法是如何进行id生成的。

雪花算法的优缺点是:

优点:

  • 毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。
  • 不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。
  • 可以根据自身业务特性分配bit位,非常灵活。

缺点:

  • 强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。

应用举例Mongdb objectID

MongoDB官方文档 ObjectID可以算作是和snowflake类似方法,通过“时间+机器码+pid+inc”共12个字节,通过4+3+2+3的方式最终标识成一个24长度的十六进制字符。

雪花的结构

首先,我们从它的设计入手,自己想一下,如果让我们设计一个id,如何保证既能唯一又能按照时间递增?

首先,既然要按照时间递增,那么这个id一定是个数,而不是字符串。并且在id中时间要作为第一影响因素,越晚生成的id,数字越大。那么整个数字id的前几位一定是时间戳。这就实现了按照时间递增。

那么同时间的并发生成如何保证唯一性呢?我们还会想到在分布式情况下要在多台机器上生成id,那么直接再加上这台机器的id就好了。

Ok,继续思考,时间相同,在同一台机器上生成的多个id如何保证唯一性,这时候就会想,也许可以再在后面加一串随机数或者序列之类的。

想到这,就有了下面的雪花算法的结构图。

可以看出,雪花算法生成的id既保证了唯一性,又因为是long存储,所以能够按照时间进行排序。至于69年的限制可以忽略不计。

/**
* 雪花算法--分布式系统ID
* @author huzhiyong
*
*/
public class IdWorker {
private long workerId;
private long datacenterId;
private long sequence; public IdWorker(long workerId, long datacenterId, long sequence) {
// sanity check for workerId
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(
String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(
String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
System.out.printf(
"worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
} private long twepoch = 1288834974657L;
private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
private long maxWorkerId = -1L ^ (-1L << workerIdBits);
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
private long sequenceBits = 12L;
private long workerIdShift = sequenceBits;
private long datacenterIdShift = sequenceBits + workerIdBits;
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private long sequenceMask = -1L ^ (-1L << sequenceBits);
private long lastTimestamp = -1L; public long getWorkerId() {
return workerId;
} public long getDatacenterId() {
return datacenterId;
} public long getTimestamp() {
return System.currentTimeMillis();
} public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
}
lastTimestamp = timestamp;
return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence;
} private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} private long timeGen() {
return System.currentTimeMillis();
} // ---------------测试---------------
public static void main(String[] args) {
IdWorker worker = new IdWorker(1, 1, 1);
for (int i = 0; i < 30; i++) {
System.out.println(worker.nextId());
}
}
}

分布式系统ID的更多相关文章

  1. 分布式系统ID生成方案汇总

    在分布式系统中,需要对大量的数据.消息.请求等进行唯一的标识,例如分布式数据库的ID需要满足唯一且多数据库同步,在单一系统中,使用数据库自增主键可以满足需求,但是在分布式系统中就需要一个能够生成全局唯 ...

  2. 分布式系统ID生成办法

    前言 一般单机或者单数据库的项目可能规模比较小,适应的场景也比较有限,平台的访问量和业务量都较小,业务ID的生成方式比较原始但是够用,它并没有给这样的系统带来问题和瓶颈,所以这种情况下我们并没有对此给 ...

  3. 分布式系统ID的几种生成办法

    前言 一般单机或者单数据库的项目可能规模比较小,适应的场景也比较有限,平台的访问量和业务量都较小,业务ID的生成方式比较原始但是够用,它并没有给这样的系统带来问题和瓶颈,所以这种情况下我们并没有对此给 ...

  4. 分布式系统ID的生成方法之UUID、数据库、算法、Redis、Leaf方案

    一般单机或者单数据库的项目可能规模比较小,适应的场景也比较有限,平台的访问量和业务量都较小,业务ID的生成方式比较原始但是够用,它并没有给这样的系统带来问题和瓶颈,所以这种情况下我们并没有对此给予太多 ...

  5. 分布式系统ID生成方案

    自增ID 不错,可以限度抑制ID的大小.但需要有一个中心化的节点作为解决原子性问题.可以选用Redis,MySQL,Zookeeper.成本有点高. UUID 分布式,而且唯一!缺点是生产的ID太长. ...

  6. CosId 通用、灵活、高性能的分布式 ID 生成器

    CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...

  7. CosId 1.0.0 发布,通用、灵活、高性能的分布式 ID 生成器

    CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...

  8. CosId 1.0.3 发布,通用、灵活、高性能的分布式 ID 生成器

    CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...

  9. CosId 1.1.0 发布,通用、灵活、高性能的分布式 ID 生成器

    CosId 通用.灵活.高性能的分布式 ID 生成器 介绍 CosId 旨在提供通用.灵活.高性能的分布式系统 ID 生成器. 目前提供了俩大类 ID 生成器:SnowflakeId (单机 TPS ...

随机推荐

  1. Pulsar の 保证消息的顺序性、幂等性和可靠性

    原文链接:Pulsar の 保证消息的顺序性.幂等性和可靠性 一.背景 前面两篇文章,已经介绍了关于Pulsar消费者的详细使用和自研的Pulsar组件. 接下来,将简单分析如何保证消息的顺序性.幂等 ...

  2. 【Python机器学习实战】决策树与集成学习(五)——集成学习(3)GBDT应用实例

    前面对GBDT的算法原理进行了描述,通过前文了解到GBDT是以回归树为基分类器的集成学习模型,既可以做分类,也可以做回归,由于GBDT设计很多CART决策树相关内容,就暂不对其算法流程进行实现,本节就 ...

  3. Linux(二)——常用命令

    一.一般指令 立刻关机:shutdown -h now 1分钟后关机:shutdown -h 1 立刻重启:shutdown -r now 立刻关机:halt 立刻重启:reboot 把内存的数据同步 ...

  4. linux清空文件

    https://www.cnblogs.com/mrwang1101/p/6166326.html

  5. Identity角色管理一(准备工作)

    因角色管理需要有用户才能进行(需要将用户从角色中添加,删除)故角色管理代码依托用户管理 只需在Startup服务中添加角色管理即可完成 public void ConfigureServices(IS ...

  6. go build 与go install

    相同点都能生成可执行文件 不同点go build 不能生成包文件, go install 可以生成包文件go build 生成可执行文件在当前目录下, go install 生成可执行文件在bin目录 ...

  7. HDU2647Reward (拓扑排序)

    Reward Description Dandelion's uncle is a boss of a factory. As the spring festival is coming , he w ...

  8. java web利用jsp完成简单的学生管理系统

    index.jsp <%@ page language="java" import="java.sql.*" pageEncoding="utf ...

  9. PTA 面向对象程序设计 6-2 逆序字符串

    6-2 逆序字符串 设计一个void类型的函数reverse_string,其功能是将一个给定的字符串逆序.例如,给定字符串为"hello",逆序后为"olleh&quo ...

  10. Shell系列(34) - 多分支case语句简介及实例

    多分支case条件语句 概念 case语句和if...elif...else语句一样都是多分支条件语句,不过和if多分支条件语句不同的是,case语句只能判断一种条件关系,而if语句可以判断多种条件关 ...