题解 God Knows
yysy,我考场上连\(n^2\)的暴力都没搞出来
这里实际上求的是最小权极大上升子序列
但这个跟题目几乎没什么直接联系,貌似只是因为极大上升子序列一定是符合题意的一组解
然后题里要求总权值最小,所以是最小权极大上升子序列
\(n^2\)代码:
int minn, mindp;
for (int i=1; i<=n; ++i) {
minn=INF, mindp=INF;
for (int j=i-1; j; --j) if (p[j]<p[i]) {if (p[i]-p[j]<minn) minn=p[i]-p[j], mindp=min(mindp, dp[j]);}
dp[i]+=mindp==INF?0:mindp;
for (int j=i-1; j; --j) if (p[j]<p[i]) vis[j]=1;
dp[i]+=c[i];
}
for (int i=1; i<=n; ++i) if (!vis[i]) ans=min(ans, dp[i]);
printf("%d\n", ans);
然后正解:
考虑如何求出所有极大上升子序列中的最小总权值
首先发现对于一个位置i,它左侧所有可能作为可以转移的子序列有端点的点j可以用一个单调栈维护
但由于有个\(p[i]\)的限制,这个单调栈貌似在一个位置弹过元素后就失效了
其实这里可以用线段树去维护它
这个\(p[i]\)的限制可以用一个「翻转坐标系」的技巧处理掉
当出现形如「\(p[i]<p[j]\)的前提下,对符合要求的\(i\),\(j\)进行操作」的限制条件时,可以通过将\(p[\ ]\)翻转为\(x\)轴,\(i\)翻转为\(y\)轴的方式
通过翻转坐标系将这样的限制条件转化为一个序列上的区间操作「线段树维护单调栈」:给出一个序列,这个序列的每个位置有两个值 \(a_i,f_i\),每次询问一个区间,把这个区间的所有数以\(a\)为关键字,从左到右做一个单调递减的栈,求这个单调栈中的元素的\(f\)值的最小值。
具体实现为对于每个区间,额外维护\(rmx[\ ],f_{min}[\ ],val[\ ]\)三个数组
\(rmx[\ ]\)记录当前区间的右子区间中的最大值,实际上就是左子区间中小于\(rmx[p]\)的数应该被弹掉
\(f_min[\ ]\)记录query(p<<1, l, mid, rmx[p])
,这个东西在pushup时就可以维护出来,其意义在于确保query是\(O(nlog^2n)\)的
\(val[\ ]\)就是记录\(f_i\)用的,但在这里非常容易搞混
核心在于这个写的有点麻烦的query函数
int query(int p, int l, int r, int q) {
if (l<=tl(p)&&r>=tr(p)) {
if (!maxn(p)) return INF;
if (tl(p)==tr(p)) return maxn(p)>q?dp(maxn(p)):INF;
if (q>rmx(p)) return query(p<<1, l, r, q);
else return min(fmn(p), query(p<<1|1, l, r, q));
}
int mid=(tl(p)+tr(p))>>1, ans=INF;
if (r>mid) {
int rmax=qmax(p<<1|1, mid+1, r);
if (q>rmax) {
if (l<=mid) return query(p<<1, l, r, q);
else return INF;
}
else {
if (l<=mid) return min(query(p<<1, l, r, rmax), query(p<<1|1, l, r, q));
else return query(p<<1|1, l, r, q);
}
}
else return query(p<<1, l, r, q);
}
总时间复杂度\(O(nlog^2n)\)
Code:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 200010
#define ll long long
#define ld long double
#define usd unsigned
#define ull unsigned long long
//#define int long long
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
char buf[1<<21], *p1=buf, *p2=buf;
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
}
int n;
int p[N], c[N];
namespace force{
int head[N], size, ans=INF;
bool vis[N];
struct edge{int to, next;}e[N*100];
inline void add(int s, int t) {edge* k=&e[++size]; k->to=t; k->next=head[s]; head[s]=size;}
void dfs(int sum) {
//cout<<"dfs "<<sum<<endl;
bool cge[30], all=1;
memset(cge, 0, sizeof(bool)*(n+5));
for (int i=1; i<=n; ++i) {
if (!vis[i]) {
vis[i]=1;
for (int j=head[i],v; j; j=e[j].next) {
v = e[j].to;
if (!vis[v]) {
cge[v]=1;
vis[v]=1;
}
}
dfs(sum+c[i]);
vis[i]=0;
for (int j=head[i],v; j; j=e[j].next) {
v = e[j].to;
if (cge[v]) vis[v]=0;
}
all=0;
}
}
if (all) ans=min(ans, sum);
}
void solve() {
for (int i=1; i<=n; ++i) {
for (int j=i-1; j; --j) if (p[j]>p[i]) add(i, j); //, cout<<"add "<<i<<' '<<j<<endl;
for (int j=i+1; j<=n; ++j) if (p[j]<p[i]) add(i, j); //, cout<<"add "<<i<<' '<<j<<endl;
}
dfs(0);
printf("%d\n", ans);
exit(0);
}
}
namespace task1{
int r[N];
int head[N], size, ans=INF;
bool vis[N];
struct edge{int to, next;}e[N*100];
inline void add(int s, int t) {edge* k=&e[++size]; k->to=t; k->next=head[s]; head[s]=size;}
void solve() {
for (int i=1; i<=n; ++i) r[i]=i;
for (int i=1; i<=n; ++i) {
for (int j=i-1; j; --j) if (p[j]>p[i]) add(i, j); //, cout<<"add "<<i<<' '<<j<<endl;
for (int j=i+1; j<=n; ++j) if (p[j]<p[i]) add(i, j); //, cout<<"add "<<i<<' '<<j<<endl;
}
int sum, cnt, cnt2=0;
while (++cnt2%5 || clock()<=600000) {
sum=0; cnt=0;
random_shuffle(r+1, r+n+1);
memset(vis, 0, sizeof(bool)*(n+5));
for (int i=1; i<=n; ++i) {
if (vis[r[i]]) continue;
sum+=c[r[i]]; ++cnt; vis[r[i]]=1;
for (int j=head[r[i]],v; j; j=e[j].next) {
v = e[j].to;
if (!vis[j]) {vis[j]=1; ++cnt;}
}
if (sum>ans) goto jump;
if (cnt==n) {ans=min(ans, sum); goto jump;}
}
jump: ;
}
printf("%d\n", ans);
//cout<<cnt2<<endl;
exit(0);
}
}
namespace task2{
int dp[N], ans=INF;
bool vis[N];
void solve() {
int minn, mini=0, mindp;
for (int i=1; i<=n; ++i) {
cout<<"i: "<<i<<" p[i]: "<<p[i]<<endl;
minn=INF, mindp=INF;
for (int j=i-1; j; --j) if (p[j]<p[i]) {/*cout<<"1: "<<p[j]<<endl;*/ if (p[i]-p[j]<minn) minn=p[i]-p[j], mini=j, mindp=min(mindp, dp[j]), cout<<"2: "<<p[j]<<endl;}
dp[i]+=mindp==INF?0:mindp;
for (int j=i-1; j; --j) if (p[j]<p[i]) vis[j]=1;
dp[i]+=c[i];
}
//for (int i=1; i<=n; ++i) cout<<vis[i]<<' '; cout<<endl;
//for (int i=1; i<=n; ++i) cout<<dp[i]<<' '; cout<<endl;
for (int i=1; i<=n; ++i) if (!vis[i]) ans=min(ans, dp[i]);
printf("%d\n", ans);
exit(0);
}
}
namespace task{
const int SIZE=N<<2;
int tl[SIZE], tr[SIZE], maxn[SIZE], rmx[SIZE], fmn[SIZE], dp[SIZE];
#define tl(p) tl[p]
#define tr(p) tr[p]
#define maxn(p) maxn[p]
#define dp(p) dp[p]
#define rmx(p) rmx[p]
#define fmn(p) fmn[p]
int qmax(int p, int l, int r) {
if (l<=tl(p)&&r>=tr(p)) return maxn(p);
int mid=(tl(p)+tr(p))>>1, ans=0;
if (l<=mid) ans=max(ans, qmax(p<<1, l, r));
if (r>mid) ans=max(ans, qmax(p<<1|1, l, r));
return ans;
}
int query(int p, int l, int r, int q) {
//cout<<"query "<<p<<' '<<l<<' '<<r<<' '<<q<<endl;
if (l<=tl(p)&&r>=tr(p)) {
if (!maxn(p)) return INF;
//cout<<"pos1"<<endl;
if (tl(p)==tr(p)) return maxn(p)>q?dp(maxn(p)):INF;
//cout<<"pos2"<<endl;
if (q>rmx(p)) return query(p<<1, l, r, q);
else return min(fmn(p), query(p<<1|1, l, r, q));
}
int mid=(tl(p)+tr(p))>>1, ans=INF;
if (r>mid) {
int rmax=qmax(p<<1|1, mid+1, r);
if (q>rmax) {
if (l<=mid) return query(p<<1, l, r, q);
else return INF;
}
else {
if (l<=mid) return min(query(p<<1, l, r, rmax), query(p<<1|1, l, r, q));
else return query(p<<1|1, l, r, q);
}
}
else return query(p<<1, l, r, q);
}
void pushup(int p) {
maxn(p)=max(maxn(p<<1), maxn(p<<1|1));
rmx(p)=maxn(p<<1|1);
fmn(p)=query(p<<1, tl(p<<1), tr(p<<1), rmx(p));
//cout<<p<<": "<<maxn(p)<<' '<<rmx(p)<<' '<<fmn(p)<<endl;
}
void build(int p, int l, int r) {
tl(p)=l; tr(p)=r; fmn(p)=INF;
if (l>=r) return ;
int mid=(l+r)>>1;
build(p<<1, l, mid);
build(p<<1|1, mid+1, r);
}
void upd(int p, int pos, int val) {
//cout<<"upd "<<p<<' '<<tl(p)<<' '<<tr(p)<<' '<<pos<<' '<<val<<endl;
if (tl(p)==tr(p)) {maxn(p)=rmx(p)=fmn(p)=val; return ;}
int mid=(tl(p)+tr(p))>>1;
if (pos<=mid) upd(p<<1, pos, val);
else upd(p<<1|1, pos, val);
pushup(p);
}
void solve() {
build(1, 1, n);
for (int i=1,t; i<=n; ++i) {
//cout<<i<<": "<<query(1, 1, p[i], 0)<<endl;
t=query(1, 1, p[i], 0);
//cout<<endl;
dp[i]=(t==INF?0:t)+c[i];
upd(1, p[i], i);
}
printf("%d\n", query(1, 1, n, 0));
exit(0);
}
}
signed main()
{
#ifdef DEBUG
freopen("1.in", "r", stdin);
#endif
n=read();
for (int i=1; i<=n; ++i) p[i]=read();
for (int i=1; i<=n; ++i) c[i]=read();
//if (n<=15) force::solve();
//else task1::solve();
//task2::solve();
task::solve();
return 0;
}
题解 God Knows的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
- JSOI2016R3 瞎BB题解
题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...
随机推荐
- OpenFlow协议分析
OpenFlow协议分析实验手册 启动虚拟机mininet 和 控制器 ODL 启动wireshark,在控制器的ens32 网卡抓包 使用mininet创建简单拓扑,并连接控制器,指定交换机为ovs ...
- 机器学习Sklearn系列:(三)决策树
决策树 熵的定义 如果一个随机变量X的可能取值为X={x1,x2,..,xk},其概率分布为P(X=x)=pi(i=1,2,...,n),则随机变量X的熵定义为\(H(x) = -\sum{p(x)l ...
- 我的Linux发行版选择
Ubuntu CentOS Debian Fedora Slackware Mint Xubuntu Arch OpenSUSE Red Hat Slackel PureOS Mageia PCLin ...
- 如何少走弯路安装NLTK?
NLP中分词是一件麻烦事,nltk可以一定程度上优雅的解决一些需求 如果你去搜索"nltk安装",那么多半会得到以下的代码 import nltk nltk.download() ...
- 网络流24题:最长 k 可重区间集问题题解
最长 k 可重区间集问题题解: 突然想起这个锅还没补,于是来把这里补一下qwq. 1.题意简述: 有\(n\)个开区间,这\(n\)个开区间组成了一个直线\(L\),要求选择一些区间,使得在直线\(L ...
- c语言:逗号运算符
#include <stdio.h> main() { int a,s,d; s=2,d=3; a=12+(s+2,d+4); printf("%d\n",a); in ...
- Redis 6.0 新特性:带你 100% 掌握多线程模型
Redis 官方在 2020 年 5 月正式推出 6.0 版本,提供很多振奋人心的新特性,所以备受关注. 码老湿,提供了啥特性呀?知道了我能加薪么? 主要特性如下: 多线程处理网络 IO: 客户端缓存 ...
- [刘阳Java]_Spring AOP入门_第7讲
AOP技术个人认为是能够完善(改善)面向对象编程OOP.为什么这么说,我们得先从AOP的概念说起,然后通过一段简单的例子加以佐证.这样子大家就可以慢慢地了解AOP 1. AOP概念 AOP为Aspec ...
- Guava Cache使用的三种姿势
姿势一 使用expiredAferWriter 优点 简单 粗暴 缺点 同步阻塞问题:如果多个线程同时请求同一个过期的key,只有一个线程能够获得去加载缓存的锁,但是其他未获取加载缓存锁的线程也会阻塞 ...
- Centos7 firewall开放3306端口 笔记
1. 开启端口 // zone -- 作用域 // add-port=80/tcp -- 添加端口,格式为:端口/通讯协议 // permanent -- 永久生效,没有此参数重启后失效 firewa ...