传送门

yysy,我考场上连\(n^2\)的暴力都没搞出来

这里实际上求的是最小权极大上升子序列

但这个跟题目几乎没什么直接联系,貌似只是因为极大上升子序列一定是符合题意的一组解

然后题里要求总权值最小,所以是最小权极大上升子序列

\(n^2\)代码:

int minn, mindp;
for (int i=1; i<=n; ++i) {
minn=INF, mindp=INF;
for (int j=i-1; j; --j) if (p[j]<p[i]) {if (p[i]-p[j]<minn) minn=p[i]-p[j], mindp=min(mindp, dp[j]);}
dp[i]+=mindp==INF?0:mindp;
for (int j=i-1; j; --j) if (p[j]<p[i]) vis[j]=1;
dp[i]+=c[i];
}
for (int i=1; i<=n; ++i) if (!vis[i]) ans=min(ans, dp[i]);
printf("%d\n", ans);

然后正解:

考虑如何求出所有极大上升子序列中的最小总权值

首先发现对于一个位置i,它左侧所有可能作为可以转移的子序列有端点的点j可以用一个单调栈维护

但由于有个\(p[i]\)的限制,这个单调栈貌似在一个位置弹过元素后就失效了

其实这里可以用线段树去维护它

这个\(p[i]\)的限制可以用一个「翻转坐标系」的技巧处理掉

  • 当出现形如「\(p[i]<p[j]\)的前提下,对符合要求的\(i\),\(j\)进行操作」的限制条件时,可以通过将\(p[\ ]\)翻转为\(x\)轴,\(i\)翻转为\(y\)轴的方式

    通过翻转坐标系将这样的限制条件转化为一个序列上的区间操作

  • 「线段树维护单调栈」:给出一个序列,这个序列的每个位置有两个值 \(a_i,f_i\),每次询问一个区间,把这个区间的所有数以\(a\)为关键字,从左到右做一个单调递减的栈,求这个单调栈中的元素的\(f\)值的最小值。

具体实现为对于每个区间,额外维护\(rmx[\ ],f_{min}[\ ],val[\ ]\)三个数组

\(rmx[\ ]\)记录当前区间的右子区间中的最大值,实际上就是左子区间中小于\(rmx[p]\)的数应该被弹掉

\(f_min[\ ]\)记录query(p<<1, l, mid, rmx[p]),这个东西在pushup时就可以维护出来,其意义在于确保query是\(O(nlog^2n)\)的

\(val[\ ]\)就是记录\(f_i\)用的,但在这里非常容易搞混

核心在于这个写的有点麻烦的query函数

int query(int p, int l, int r, int q) {
if (l<=tl(p)&&r>=tr(p)) {
if (!maxn(p)) return INF;
if (tl(p)==tr(p)) return maxn(p)>q?dp(maxn(p)):INF;
if (q>rmx(p)) return query(p<<1, l, r, q);
else return min(fmn(p), query(p<<1|1, l, r, q));
}
int mid=(tl(p)+tr(p))>>1, ans=INF;
if (r>mid) {
int rmax=qmax(p<<1|1, mid+1, r);
if (q>rmax) {
if (l<=mid) return query(p<<1, l, r, q);
else return INF;
}
else {
if (l<=mid) return min(query(p<<1, l, r, rmax), query(p<<1|1, l, r, q));
else return query(p<<1|1, l, r, q);
}
}
else return query(p<<1, l, r, q);
}

总时间复杂度\(O(nlog^2n)\)

Code:

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 200010
#define ll long long
#define ld long double
#define usd unsigned
#define ull unsigned long long
//#define int long long #define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
char buf[1<<21], *p1=buf, *p2=buf;
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
} int n;
int p[N], c[N]; namespace force{
int head[N], size, ans=INF;
bool vis[N];
struct edge{int to, next;}e[N*100];
inline void add(int s, int t) {edge* k=&e[++size]; k->to=t; k->next=head[s]; head[s]=size;}
void dfs(int sum) {
//cout<<"dfs "<<sum<<endl;
bool cge[30], all=1;
memset(cge, 0, sizeof(bool)*(n+5));
for (int i=1; i<=n; ++i) {
if (!vis[i]) {
vis[i]=1;
for (int j=head[i],v; j; j=e[j].next) {
v = e[j].to;
if (!vis[v]) {
cge[v]=1;
vis[v]=1;
}
}
dfs(sum+c[i]);
vis[i]=0;
for (int j=head[i],v; j; j=e[j].next) {
v = e[j].to;
if (cge[v]) vis[v]=0;
}
all=0;
}
}
if (all) ans=min(ans, sum);
}
void solve() {
for (int i=1; i<=n; ++i) {
for (int j=i-1; j; --j) if (p[j]>p[i]) add(i, j); //, cout<<"add "<<i<<' '<<j<<endl;
for (int j=i+1; j<=n; ++j) if (p[j]<p[i]) add(i, j); //, cout<<"add "<<i<<' '<<j<<endl;
}
dfs(0);
printf("%d\n", ans);
exit(0);
}
} namespace task1{
int r[N];
int head[N], size, ans=INF;
bool vis[N];
struct edge{int to, next;}e[N*100];
inline void add(int s, int t) {edge* k=&e[++size]; k->to=t; k->next=head[s]; head[s]=size;}
void solve() {
for (int i=1; i<=n; ++i) r[i]=i;
for (int i=1; i<=n; ++i) {
for (int j=i-1; j; --j) if (p[j]>p[i]) add(i, j); //, cout<<"add "<<i<<' '<<j<<endl;
for (int j=i+1; j<=n; ++j) if (p[j]<p[i]) add(i, j); //, cout<<"add "<<i<<' '<<j<<endl;
}
int sum, cnt, cnt2=0;
while (++cnt2%5 || clock()<=600000) {
sum=0; cnt=0;
random_shuffle(r+1, r+n+1);
memset(vis, 0, sizeof(bool)*(n+5));
for (int i=1; i<=n; ++i) {
if (vis[r[i]]) continue;
sum+=c[r[i]]; ++cnt; vis[r[i]]=1;
for (int j=head[r[i]],v; j; j=e[j].next) {
v = e[j].to;
if (!vis[j]) {vis[j]=1; ++cnt;}
}
if (sum>ans) goto jump;
if (cnt==n) {ans=min(ans, sum); goto jump;}
}
jump: ;
}
printf("%d\n", ans);
//cout<<cnt2<<endl;
exit(0);
}
} namespace task2{
int dp[N], ans=INF;
bool vis[N];
void solve() {
int minn, mini=0, mindp;
for (int i=1; i<=n; ++i) {
cout<<"i: "<<i<<" p[i]: "<<p[i]<<endl;
minn=INF, mindp=INF;
for (int j=i-1; j; --j) if (p[j]<p[i]) {/*cout<<"1: "<<p[j]<<endl;*/ if (p[i]-p[j]<minn) minn=p[i]-p[j], mini=j, mindp=min(mindp, dp[j]), cout<<"2: "<<p[j]<<endl;}
dp[i]+=mindp==INF?0:mindp;
for (int j=i-1; j; --j) if (p[j]<p[i]) vis[j]=1;
dp[i]+=c[i];
}
//for (int i=1; i<=n; ++i) cout<<vis[i]<<' '; cout<<endl;
//for (int i=1; i<=n; ++i) cout<<dp[i]<<' '; cout<<endl;
for (int i=1; i<=n; ++i) if (!vis[i]) ans=min(ans, dp[i]);
printf("%d\n", ans);
exit(0);
}
} namespace task{
const int SIZE=N<<2;
int tl[SIZE], tr[SIZE], maxn[SIZE], rmx[SIZE], fmn[SIZE], dp[SIZE];
#define tl(p) tl[p]
#define tr(p) tr[p]
#define maxn(p) maxn[p]
#define dp(p) dp[p]
#define rmx(p) rmx[p]
#define fmn(p) fmn[p]
int qmax(int p, int l, int r) {
if (l<=tl(p)&&r>=tr(p)) return maxn(p);
int mid=(tl(p)+tr(p))>>1, ans=0;
if (l<=mid) ans=max(ans, qmax(p<<1, l, r));
if (r>mid) ans=max(ans, qmax(p<<1|1, l, r));
return ans;
}
int query(int p, int l, int r, int q) {
//cout<<"query "<<p<<' '<<l<<' '<<r<<' '<<q<<endl;
if (l<=tl(p)&&r>=tr(p)) {
if (!maxn(p)) return INF;
//cout<<"pos1"<<endl;
if (tl(p)==tr(p)) return maxn(p)>q?dp(maxn(p)):INF;
//cout<<"pos2"<<endl;
if (q>rmx(p)) return query(p<<1, l, r, q);
else return min(fmn(p), query(p<<1|1, l, r, q));
}
int mid=(tl(p)+tr(p))>>1, ans=INF;
if (r>mid) {
int rmax=qmax(p<<1|1, mid+1, r);
if (q>rmax) {
if (l<=mid) return query(p<<1, l, r, q);
else return INF;
}
else {
if (l<=mid) return min(query(p<<1, l, r, rmax), query(p<<1|1, l, r, q));
else return query(p<<1|1, l, r, q);
}
}
else return query(p<<1, l, r, q);
}
void pushup(int p) {
maxn(p)=max(maxn(p<<1), maxn(p<<1|1));
rmx(p)=maxn(p<<1|1);
fmn(p)=query(p<<1, tl(p<<1), tr(p<<1), rmx(p));
//cout<<p<<": "<<maxn(p)<<' '<<rmx(p)<<' '<<fmn(p)<<endl;
}
void build(int p, int l, int r) {
tl(p)=l; tr(p)=r; fmn(p)=INF;
if (l>=r) return ;
int mid=(l+r)>>1;
build(p<<1, l, mid);
build(p<<1|1, mid+1, r);
}
void upd(int p, int pos, int val) {
//cout<<"upd "<<p<<' '<<tl(p)<<' '<<tr(p)<<' '<<pos<<' '<<val<<endl;
if (tl(p)==tr(p)) {maxn(p)=rmx(p)=fmn(p)=val; return ;}
int mid=(tl(p)+tr(p))>>1;
if (pos<=mid) upd(p<<1, pos, val);
else upd(p<<1|1, pos, val);
pushup(p);
}
void solve() {
build(1, 1, n);
for (int i=1,t; i<=n; ++i) {
//cout<<i<<": "<<query(1, 1, p[i], 0)<<endl;
t=query(1, 1, p[i], 0);
//cout<<endl;
dp[i]=(t==INF?0:t)+c[i];
upd(1, p[i], i);
}
printf("%d\n", query(1, 1, n, 0));
exit(0);
}
} signed main()
{
#ifdef DEBUG
freopen("1.in", "r", stdin);
#endif n=read();
for (int i=1; i<=n; ++i) p[i]=read();
for (int i=1; i<=n; ++i) c[i]=read();
//if (n<=15) force::solve();
//else task1::solve();
//task2::solve();
task::solve(); return 0;
}

题解 God Knows的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

  10. JSOI2016R3 瞎BB题解

    题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...

随机推荐

  1. NTP时间服务器配置

    1.服务器端配置: #允许这些IP向自己同步时间 restrict x.x.x.x mask x.x.x.x nomodiy notrap #当和定义的所有server服务器无法同步后,和自身同步 s ...

  2. ctf之SusCTF2017-Crack Zip

    题目信息如下,可知为杂项题,且无提示 下载文件打开如图,该压缩包是加密的 首先想到的是暴力破解,下载zip暴力破解软件打开文件. 下一步,选择暴力破解 进行暴力破解设定,进行破解 破解完成,得到密解压 ...

  3. 《快来为你的 .NET 应用加个监控吧!》更新版本啦

    目录 导读 三种方式处理监控数据 主动推送 ASP.NET Core 自定义URL .NET diagnostics 自定义监控指标 导读 CZGL.ProcessMetrics 是一个 Metric ...

  4. 「CF555E」 Case of Computer Network

    「CF555E」 Case of Computer Network 传送门 又是给边定向的题目(马上想到欧拉回路) 然而这个题没有对度数的限制,你想歪了. 然后又开始想一个类似于匈牙利的算法:我先跑, ...

  5. LeetCode 895. Maximum Frequency Stack

    题目链接:https://leetcode.com/problems/maximum-frequency-stack/ 题意:实现一种数据结构FreqStack,FreqStack需要实现两个功能: ...

  6. Easyui动态添加控件无法渲染 $.parser.parse()无效

    本文链接:https://blog.csdn.net/huangbaokang/article/details/78367553动态添加easyui控件<input class="ea ...

  7. 前端开发入门到进阶第二集【emmet插件的使用技巧】

    Emmet (前身为 Zen Coding) 是一个能大幅度提高前端开发效率的一个工具.基本上,大多数的文本编辑器都会允许你存储和重用一些代码块,我们称之为"片段".虽然片段能很好 ...

  8. Leetcode12. 整数转罗马数字Leetcode18. 四数之和

    > 简洁易懂讲清原理,讲不清你来打我~ 输入整数,输出对应的罗马字符串![在这里插入图片描述](https://img-blog.csdnimg.cn/54b001c62a0d4d348c962 ...

  9. 1java基础

    1.java特性 详细解读 Java语言_小沐CA-CSDN博客 (1)Easy:Java的语法比C++的相对简单,另一个方面就是Java能使软件在很小的机器上运行,基础解释其和类库的支持的大小约为4 ...

  10. Cannot read property 'data' of undefined —— 小程序开发

    由于疫情原因目前处于半下岗状态,在家的时候就研究起了小程序开发.由于是新手,所以总会遇到各种问题,顺便记录一下. wx.showModal({ title: '提示', content: '这是一个模 ...