DFT、DTFT、DFS、FFT之间的关系
DFT、DTFT、DFS、FFT、FT、FS之间的关系
FT和FS是研究连续信号的,在数字信号处理中不涉及。
主要是前四种的关系:
DFT(Discrete Fourier Transform):离散傅里叶变换
DTFT(Discrete-time Fourier Transform):离散时间傅里叶变换
DFS(Discrete Fourier Series):离散傅里叶级数
FFT(Fast Fourier Transform):快速傅里叶变换
首先来说图(1)和图(2),对于一个模拟信号,如图(1)所示,要分析它的频率成分,必须变换到频域,这是通过傅立叶变换即FT(Fourier Transform)得到的,于是有了模拟信号的频谱,如图(2);注意1:时域和频域都是连续的!
但是,计算机只能处理数字信号,首先需要将原模拟信号在时域离散化,即在时域对其进行采样,采样脉冲序列如图(3)所示,该采样序列的频谱如图(4),可见它的频谱也是一系列的脉冲。所谓时域采样,就是在时域对信号进行相乘,(1)×(3)后可以得到离散时间信号x[n],如图(5)所示;由前面的性质1,时域的相乘相当于频域的卷积,那么,图(2)与图(4)进行卷积,根据前面的性质2知,**会在各个脉冲点处出现镜像,于是得到图(6),它就是图(5)所示离散时间信号x[n]的DTFT(Discrete time Fourier Transform),即离散时间傅立叶变换,这里强调的是“离散时间”四个字。**注意2:此时时域是离散的,而频域依然是连续的。
经过上面两个步骤,我们得到的信号依然不能被计算机处理,因为频域既连续,又周期。我们自然就想到,既然时域可以采样,为什么频域不能采样呢?这样不就时域与频域都离散化了吗?没错,接下来对频域在进行采样,频域采样信号的频谱如图(8)所示,它的时域波形如图(7)。现在我们进行频域采样,即频域相乘,图(6)×图(8)得到图(10),那么根据性质1,这次是频域相乘,时域卷积了吧,图(5)和图(7)卷积得到图(9),不出所料的,镜像会呈周期性出现在各个脉冲点处。我们取图(10)周期序列的主值区间,并记为X(k),它就是序列x[n]的DFT(Discrete Fourier Transform),即离散傅立叶变换。可见,DFT只是为了计算机处理方便,在频率域对DTFT进行的采样并截取主值而已。有人可能疑惑,对图(10)进行IDFT,回到时域即图(9),它与原离散信号图(5)所示的x[n]不同呀,它是x[n]的周期性延拓!没错,因此你去查找一个IDFT的定义式,是不是对n的取值区间进行限制了呢?这一限制的含义就是,取该周期延拓序列的主值区间,即可还原x[n]!
FFT呢?FFT的提出完全是为了快速计算DFT而已,它的本质就是DFT!我们常用的信号处理软件MATLAB或者DSP软件包中,包含的算法都是FFT而非DFT。
DFS,是针对时域周期信号提出的,如果对图(9)所示周期延拓信号进行DFS,就会得到图(10),只要截取其主值区间,则与DFT是完全的一一对应的精确关系。这点对照DFS和DFT的定义式也可以轻易的看出。因此DFS与DFT的本质是一样的,只不过描述的方法不同而已。
我理解的就是:
DTFT(离散时间傅里叶变换,强调的是离散时间,只保证时域是离散的)得到对时域连续信号的离散化采样后的频谱函数,这个采样后时域的信号是离散的(采样序列是离散的),但是由于采样信号在频域的周期性,而且根据时域相乘、频域卷积的原则,原信号的频谱(是连续的)会搬移在采样信号的每一个脉冲点,这样一来,DTFT得到的频谱函数就是连续且周期的!DTFT就是对时域的采样!
但是,连续且周期的频谱信号不能够被计算机所处理,所以要就要对频域信号进行采样了(DFT)!
与时域采样相同,频域采样也是一系列的周期序列信号相乘,这样,频域的信号就是离散的了,但此时频域信号仍然是周期的。一旦对频域进行采样后(频域相乘、时域卷积),时域又和周期脉冲信号卷积了,结果就是DTFT求出的时域离散信号被搬移到每一个脉冲所在处了,但这样就实现了时域和频域的离散化!DFT就是对DTFT后的频域信号再进行一次离散化采样,得到了离散周期的时域、频域信号!(DFT会对得到的周期性频谱截取主值)
此时,时域是离散的,但是有周期性,计算机不好处理!
通过DFS截取时域离散周期信号的主值!
DTDF是数学家的杰作、DFT是工程师的杰作!离散化有助于计算机分析!
综上所述,要将模拟信号转化为可以计算机处理的离散信号,经过一下几步:
1.DTFT对时域离散化采样
2.DFT对频域离散化采样(顺便截取频域周期信号主值)
3.DFS截取时域周期信号主值
4.这样,就将连续信号转化为离散信号了(时域、频域都离散)
文章参考:参考链接
DFT、DTFT、DFS、FFT之间的关系的更多相关文章
- DFT,DTFT,DFS,FFT区别
学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等,FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一 ...
- 系统表达式(z变换、DTFT、差分方程)之间的关系
- 转载:一幅图弄清DFT与DTFT,DFS的关系
转载:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DF ...
- .NET Core与.NET Framework、Mono之间的关系
随着微软的.NET开源的推进,现在在.NET的实现上有了三个.NET Framework,Mono和.NET Core.经常被问起Mono的稳定性怎么样,后续Mono的前景如何,要回答这个问题就需要搞 ...
- .NET Core 和 .NET Framework 之间的关系
引用一段描述:Understanding the relationship between .NET Core and the .NET Framework. .NET Core and the .N ...
- 实体之间的关系【Entity Relationships】(EF基础系列篇9)
Here, you will learn how entity framework manages the relationships between entities. Entity framewo ...
- php CGI、Fastcgi、PHP-FPM的详细介绍与之间的关系
以下PHP CGI.Fastcgi.PHP-FPM的一些信息归纳和汇总----->详细介绍与之间的关系 一:CGI是干嘛的?CGI是为了保证web server传递过来的数据是标准格式的 web ...
- [转] valuestack,stackContext,ActionContext.之间的关系
三者之间的关系如下图所示: ActionContext 一次Action调用都会创建一个ActionContext 调用:ActionContext context = ActionContext ...
- angular源码阅读,依赖注入的原理:injector,provider,module之间的关系。
最开始使用angular的时候,总是觉得它的依赖注入方式非常神奇. 如果你跳槽的时候对新公司说,我曾经使用过angular,那他们肯定会问你angular的依赖注入原理是什么? 这篇博客其实是angu ...
随机推荐
- shell下读取文件数据
参考:https://www.imzcy.cn/1553.html while和for对文件的读取是有区别的: 1. for对文件的读是按字符串的方式进行的,遇到空格什么后,再读取的数据就会换行显示 ...
- Python+unittest+excel
接口测试设计思想: 框架结构如下: 目录如下: readme: config下的run_case_config.ini 文件说明: run_mode: 0:获取所有sheet页 1: if case_ ...
- 《PHP设计模式大全》系列分享专栏
<PHP设计模式大全>已整理成PDF文档,点击可直接下载至本地查阅https://www.webfalse.com/read/201739.html 文章 php设计模式介绍之编程惯用法第 ...
- 使用微服务Blog.Core开源框架的一些坑
1.使用SqlSuger组件时同一API无法自动切库 1.1 在生成Model时在类上加上特性 1.2 一个接口如果使用了多个数据库实例,会出现库找不到,需要使用ChangeDataBase切库 2. ...
- WSL中使用systemctl报错问题
Windows10里面自带的wsl中安装docker后不支持systemctl命令.需要更换命令,用Sysvinit的命令代替systemd,命令如下: Systemd command Sysvini ...
- C语言字符串处理库函数大全(转)
一.string.h中字符串处理函数 在头文件<string.h>中定义了两组字符串函数.第一组函数的名字以str开头:第二组函数的名字以mem开头. 只有函数memmove对重叠对象间的 ...
- 从零搭建一个IdentityServer——资源与访问控制
IdentityServer作为授权服务器它的最终目的是用于对资源进行管控,这里所说的资源有两种,其一是API资源,实际上也就是OIDC协议中客户端(RP)所需要访问的一系列受保护的资源(API),授 ...
- JAVA 中日志的记录于使用
java中常用的日志框架 日志接口 Commons Logging Apache Commons Logging是一个基于Java的日志记录实用程序,是用于日志记录和其他工具包的编程模型.它通过其他一 ...
- 【LeetCode】59.螺旋矩阵II
59.螺旋矩阵II 知识点:数组: 题目描述 给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix . 示例 输入:n = 3 ...
- 【LeetCode】203.移除链表元素
203.移除链表元素 知识点:链表:双指针 题目描述 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val == val 的节点,并返回 新的头节点 . 示例 ...