【AI】PytorchSegmentCode
From: https://liudongdong1.github.io/
0. 基础配置
0.1. 设置随机种子
def set_seeds(seed, cuda):
""" Set Numpy and PyTorch seeds.
"""
np.random.seed(seed)
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed_all(seed)
print ("==> Set NumPy and PyTorch seeds.")
0.2. 张量处理与转化
tensor.type() # Data type
tensor.size() # Shape of the tensor. It is a subclass of Python tuple
tensor.dim() # Number of dimensions.
# Type convertions.
tensor = tensor.cuda()
tensor = tensor.cpu()
tensor = tensor.float()
tensor = tensor.long()
#tensor 与python数据类型转化
#Tensor ----> 单个Python数据,使用data.item(),data为Tensor变量且只能为包含单个数据
#Tensor ----> Python list,使用data.tolist(),data为Tensor变量,返回shape相同的可嵌套的list
#CPU&GPU 位置
#CPU张量 ----> GPU张量,使用data.cuda()
#GPU张量 ----> CPU张量,使用data.cpu()
#tensor 与np.ndarray
ndarray = tensor.cpu().numpy()
ndarray = tensor.numpy()
tensor.cpu().detach().numpy().tolist()[0]
# np.ndarray -> torch.Tensor.
tensor = torch.from_numpy(ndarray).float()
tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride
# torch.Tensor -> PIL.Image.
image = PIL.Image.fromarray(torch.clamp(tensor * 255, min=0, max=255
).byte().permute(1, 2, 0).cpu().numpy())
image = torchvision.transforms.functional.to_pil_image(tensor) # Equivalently way
# PIL.Image -> torch.Tensor.
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))
).permute(2, 0, 1).float() / 255
tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way
# np.ndarray -> PIL.Image.
image = PIL.Image.fromarray(ndarray.astypde(np.uint8))
# PIL.Image -> np.ndarray.
ndarray = np.asarray(PIL.Image.open(path))
#复制张量
# Operation | New/Shared memory | Still in computation graph |
tensor.clone() # | New | Yes |
tensor.detach() # | Shared | No |
tensor.detach.clone()() # | New | No |
#reshape 操作
tensor = torch.reshape(tensor, shape)
# Expand tensor of shape 64*512 to shape 64*512*7*7.
torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)
#向量拼接 注意torch.cat和torch.stack的区别在于torch.cat沿着给定的维度拼接,而torch.stack会新增一维。例如当参数是3个10×5的张量,torch.cat的结果是30×5的张量,而torch.stack的结果是3×10×5的张量。
tensor = torch.cat(list_of_tensors, dim=0)
tensor = torch.stack(list_of_tensors, dim=0)
#得到0/非0 元素
torch.nonzero(tensor) # Index of non-zero elements
torch.nonzero(tensor == 0) # Index of zero elements
torch.nonzero(tensor).size(0) # Number of non-zero elements
torch.nonzero(tensor == 0).size(0) # Number of zero elements
#向量乘法
# Matrix multiplication: (m*n) * (n*p) -> (m*p).
result = torch.mm(tensor1, tensor2)
# Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p).
result = torch.bmm(tensor1, tensor2)
# Element-wise multiplication.
result = tensor1 * tensor2
#计算两组数据之间的两两欧式距离
# X1 is of shape m*d.
X1 = torch.unsqueeze(X1, dim=1).expand(m, n, d)
# X2 is of shape n*d.
X2 = torch.unsqueeze(X2, dim=0).expand(m, n, d)
# dist is of shape m*n, where dist[i][j] = sqrt(|X1[i, :] - X[j, :]|^2)
dist = torch.sqrt(torch.sum((X1 - X2) ** 2, dim=2))
#卷积核
conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True)
0.3. pytorch 版本
torch.__version__ # PyTorch version
torch.version.cuda # Corresponding CUDA version
torch.backends.cudnn.version() # Corresponding cuDNN version
torch.cuda.get_device_name(0) # GPU type
0.4. GPU指定
torch.cuda.is_available()
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
1. 数据加载分割
1.0. Transform 变化
其中
ToTensor操作会将PIL.Image或形状为H×W×D,数值范围为[0, 255]的np.ndarray转换为形状为D×H×W
,数值范围为[0.0, 1.0]的torch.Tensor。 Normalize 需要注意数据的维度,否则容易报错。
train_transform = torchvision.transforms.Compose([
torchvision.transforms.RandomResizedCrop(size=224,
scale=(0.08, 1.0)),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)),
])
val_transform = torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225)),
])
1.1. 自定义dataset类
class CharDataset(Dataset):
def __init__(self, csv_file, root_dir, transform = None):
# args: path to csv file with keypoint data, directory with images, transform to be applied
self.key_pts_frame = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
# return size of dataset
return len(self.key_pts_frame.shape)
def __getitem__(self, idx):
image_name = os.path.join(self.root_dir, self.key_pts_frame.iloc[idx, 0])
image = mpimg.imread(image_name)
# removing alpha color channel if present
if image.shape[2] == 4:
image = image[:, :, 0:3]
key_pts = self.key_pts_frame.iloc[idx, 1:].values()
key_pts = key_pts.astype('float').reshape(-1, 2)
sample = {'image': image, 'keypoints': key_pts}
# apply transform
if self.transform:
sample = self.transform(sample)
return sample
if __name__ == "__main__":
chardata=CharDataset("D:\\Model\\CharPointDetection\\data\\test\\")
print(len(chardata)) #1198
print(chardata[0].get("image").shape) #(96, 96) 最大值1, 最小值0
- dataset
import json
import matplotlib.pyplot as plt
import numpy as np
from torch.utils.data import Dataset,DataLoader
import matplotlib.pyplot as plt
from torchvision import transforms, utils
import cv2
from util.imageUtil import *
from util.config import *
class DatasetCustom(Dataset):
def __init__(self, rootcsv, imgroot,train=True, transform = None,ratio=0.7):
self.train = train
self.transform = transform
self.allItem=self.readcsv(rootcsv)
self.imgroot=imgroot
#todo 添加打乱操作 训练和测试数据集进行分割处理
if self.train :
self.labelItem=self.allItem[:int(len(self.allItem)*ratio)]
else:
self.labelItem=self.allItem[int(len(self.allItem)*ratio)+1:]
def readcsv(self,filename):
'''
读取CSV中clothdata数据
'''
with open(filename,encoding = 'utf-8') as f:
data = np.loadtxt(f,str,delimiter = ",", skiprows = 1)
data=data[::2,:] #或取csv 文件数据
return data
def __getitem__(self, index):
index=index%self.__len__()
img_name = self.labelItem[index][0].split('_') # 或取图片对于路径
imgpath="{}/camera{}_{}_{}_{}.jpg".format(self.imgroot,img_name[0],img_name[1],0-int(img_name[1]),img_name[2])
ratioW,ratioH,img=imageloadCV(imgpath,RESIZE) #图片大小进行了resize处理,对于x,y也进行缩放处理
keypoints = self.labelCoordinateHandle(self.labelItem[index][10:],ratioW,ratioH)
if self.transform is not None:
img = self.transform(img)
# return img, keypoints 对于这种枚举方式:for step ,(b_x,b_y) in enumerate(train_loader):
# return {
# 'image': torch.tensor(img, dtype=torch.float),
# 'keypoints': torch.tensor(keypoints, dtype=torch.float),
# }
# 对应代码枚举方式
# for i, data in tqdm(enumerate(dataloader), total=num_batches):
# image, keypoints = data['image'].to(DEVICE), data['keypoints'].to(DEVICE)
return {
'image': img,
'keypoints': keypoints,
}
def labelCoordinateHandle(self,data,ratioW,ratioH):
'''
对图片的长宽进行了相应的缩放处理
'''
data=[float(i) for i in data]
data[0]=data[0]*ratioW
data[1]=data[1]*ratioH
data[3]=data[3]*ratioW
data[4]=data[4]*ratioH
return np.array(data, dtype='float32')
def __len__(self):
return len(self.labelItem)
if __name__ == '__main__':
train_dataset =DatasetCustom(rootcsv=ROOT_CSV,imgroot=IMG_ROOT,train=True,transform=transforms.ToTensor(),ratio=0.7)
test_dataset = DatasetCustom(rootcsv=ROOT_CSV,imgroot=IMG_ROOT,train=False,transform=transforms.ToTensor(),ratio=0.7)
#single record
data= train_dataset.__getitem__(1) #toTensor中进行了转化 img = torch.from_numpy(pic.transpose((2, 0, 1)))
img, label = data['image'], data['keypoints']
img = np.transpose(img.numpy(),(1,2,0))
plt.imshow(img)
plt.show()
print("label",label)
#DataLoader查看
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=6, shuffle=False)
def imshow(img):
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
print('num_of_trainData:', len(train_loader))
print('num_of_testData:', len(test_loader))
#显示要给batch 中图片内容
for step ,(b_x,b_y) in enumerate(train_loader):
#print("step:",step)
if step < 1:
imgs = utils.make_grid(b_x)
print(imgs.shape)
imgs = np.transpose(imgs,(1,2,0))
print(imgs.shape)
plt.imshow(imgs)
plt.show()
break
1.2. 数据分割获取
Dataset = CharDataset(rootdir) # 自定义的dataset 类
l=Dataset.__len__()
test_percent=5
torch.manual_seed(1)
indices = torch.randperm(len(Dataset)).tolist()
dataset = torch.utils.data.Subset(Dataset, indices[:-int(np.ceil(l*test_percent/100))])
dataset_test = torch.utils.data.Subset(Dataset, indices[int(-np.ceil(l*test_percent/100)):])
# define training and validation data loaders
import utils
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=2, shuffle=True,
collate_fn=utils.collate_fn)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=(1), shuffle=False,
collate_fn=utils.collate_fn)
for batch_i, data in enumerate(data_loader):
images = data['image']
key_pts = data['keypoints']
1.3. 视频图像数据
import cv2
video = cv2.VideoCapture(mp4_path)
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = int(video.get(cv2.CAP_PROP_FPS))
video.release()
1.4. ImageFolder等类
import torchvision.datasets as dset
dataset = dset.ImageFolder('./data/dogcat_2') #没有transform,先看看取得的原始图像数据
print(dataset.classes) #根据分的文件夹的名字来确定的类别
print(dataset.class_to_idx) #按顺序为这些类别定义索引为0,1...
print(dataset.imgs) #返回从所有文件夹中得到的图片的路径以及其类别
#获取图片
datalength=min(len(os.listdir(os.path.join(imageFolder,'protectivesuit'))),len(os.listdir(os.path.join(imageFolder,'whitecoat'))))
print("数据划分:",[int(datalength*0.7), int(datalength*0.2), int(datalength*0.1)])
all_dataset = datasets.ImageFolder(root=DATA_PATH_TRAIN, transform=trans)
# 使用random_split实现数据集的划分,lengths是一个list,按照对应的数量返回数据个数。
# 这儿需要注意的是,lengths的数据量总和等于all_dataset中的数据个数,这儿不是按比例划分的
train, test, valid = torch.utils.data.random_split(dataset= all_dataset, lengths=[int(datalength*0.7), int(datalength*0.2), int(datalength*0.1)])
# 接着按照正常方式使用DataLoader读取数据,返回的是DataLoader对象
train = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=num_of_workers)
test = DataLoader(test, batch_size=batch_size, shuffle=True, num_workers=num_of_workers)
valid = DataLoader(valid, batch_size=batch_size, shuffle=True, num_workers=num_of_workers)
print(train.classes) #根据分的文件夹的名字来确定的类别
print(train.class_to_idx) #按顺序为这些类别定义索引为0,1...
print(train.imgs) #返回从所有文件夹中得到的图片的路径以及其类别
1.5. OneHot 编码
# pytorch的标记默认从0开始
tensor = torch.tensor([0, 2, 1, 3])
N = tensor.size(0)
num_classes = 4
one_hot = torch.zeros(N, num_classes).long()
one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())
2. 训练基本框架
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels) #这里以及进行了平均处理
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
for t in epoch(80):
for images, labels in tqdm.tqdm(train_loader, desc='Epoch %3d' % (t + 1)):
images, labels = images.cuda(), labels.cuda()
scores = model(images)
loss = loss_function(scores, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
#计算 softmax 输出准确率
score = model(images)
prediction = torch.argmax(score, dim=1) # 按行 返回每行最大值在的该行索引, 如果没有dim 则按照一维数组计算
num_correct = torch.sum(prediction == labels).item()
accuruacy = num_correct / labels.size(0)
- Label One-hot编码时
for images, labels in train_loader:
images, labels = images.cuda(), labels.cuda()
N = labels.size(0)
# C is the number of classes.
smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda()
smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9)
score = model(images)
log_prob = torch.nn.functional.log_softmax(score, dim=1)
loss = -torch.sum(log_prob * smoothed_labels) / N
optimizer.zero_grad()
loss.backward()
optimizer.step()
3. 模型保存与加载
注意,torch.load函数要确定存储的位置:map_location='cpu'
torch.sava有俩种方式:
保存权重和模型,但是文件结果不能改变,否则报错
;保存权重,加载时,先初始化类,然后加载权重信息。
# 保存整个网络
torch.save(net, PATH)
# 保存网络中的参数, 速度快,占空间少
torch.save(net.state_dict(),PATH)
#--------------------------------------------------
#针对上面一般的保存方法,加载的方法分别是:
model_dict=torch.load(PATH)
model_dict=model.load_state_dict(torch.load(PATH))
mlp_mixer.load_state_dict(torch.load(Config.MLPMIXER_WEIGHT,map_location='cpu'))
#save model
def save_models(tempmodel,save_path):
torch.save("./model/"+tempmodel.state_dict(), save_path)
print("Checkpoint saved")
# load model
model=Net() #模型的结构
model.load_state_dict(torch.load(Path("./model/95.model")))
model.eval() #运行推理之前,必须先调用以将退出和批处理规范化层设置为评估模式。不这样做将产生不一致的推断结果。
#断点保存
# Save checkpoint.
is_best = current_acc > best_acc
best_acc = max(best_acc, current_acc)
checkpoint = {
'best_acc': best_acc,
'epoch': t + 1,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
}
model_path = os.path.join('model', 'checkpoint.pth.tar')
torch.save(checkpoint, model_path)
if is_best:
shutil.copy('checkpoint.pth.tar', model_path)
# Load checkpoint.
if resume:
model_path = os.path.join('model', 'checkpoint.pth.tar')
assert os.path.isfile(model_path)
checkpoint = torch.load(model_path)
best_acc = checkpoint['best_acc']
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
print('Load checkpoint at epoch %d.' % start_epoch)
4. 计算准确率,查准率,查全率
# data['label'] and data['prediction'] are groundtruth label and prediction
# for each image, respectively.
accuracy = np.mean(data['label'] == data['prediction']) * 100
# Compute recision and recall for each class.
for c in range(len(num_classes)):
tp = np.dot((data['label'] == c).astype(int),
(data['prediction'] == c).astype(int))
tp_fp = np.sum(data['prediction'] == c)
tp_fn = np.sum(data['label'] == c)
precision = tp / tp_fp * 100
recall = tp / tp_fn * 100
# data['label'] and data['prediction'] are groundtruth label and prediction
# for each image, respectively.
accuracy = np.mean(data['label'] == data['prediction']) * 100
# Compute recision and recall for each class.
for c in range(len(num_classes)):
tp = np.dot((data['label'] == c).astype(int),
(data['prediction'] == c).astype(int))
tp_fp = np.sum(data['prediction'] == c)
tp_fn = np.sum(data['label'] == c)
precision = tp / tp_fp * 100
recall = tp / tp_fn * 100
建议有参数的层和汇合(pooling)层使用torch.nn模块定义,激活函数直接使用torch.nn.functional。torch.nn模块和torch.nn.functional的区别在于,torch.nn模块在计算时底层调用了torch.nn.functional,但torch.nn模块包括该层参数,还可以应对训练和测试两种网络状态。model(x)前用model.train()和model.eval()切换网络状态。loss.backward()前用optimizer.zero_grad()清除累积梯度。optimizer.zero_grad()和model.zero_grad()效果一样。
5. 可视化部分
有 Facebook 自己开发的 Visdom 和 Tensorboard 两个选择。
https://github.com/facebookresearch/visdom
https://github.com/lanpa/tensorboardX
# Example using Visdom.
vis = visdom.Visdom(env='Learning curve', use_incoming_socket=False)
assert self._visdom.check_connection()
self._visdom.close()
options = collections.namedtuple('Options', ['loss', 'acc', 'lr'])(
loss={'xlabel': 'Epoch', 'ylabel': 'Loss', 'showlegend': True},
acc={'xlabel': 'Epoch', 'ylabel': 'Accuracy', 'showlegend': True},
lr={'xlabel': 'Epoch', 'ylabel': 'Learning rate', 'showlegend': True})
for t in epoch(80):
tran(...)
val(...)
vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_loss]),
name='train', win='Loss', update='append', opts=options.loss)
vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_loss]),
name='val', win='Loss', update='append', opts=options.loss)
vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([train_acc]),
name='train', win='Accuracy', update='append', opts=options.acc)
vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([val_acc]),
name='val', win='Accuracy', update='append', opts=options.acc)
vis.line(X=torch.Tensor([t + 1]), Y=torch.Tensor([lr]),
win='Learning rate', update='append', opts=options.lr)
- pytorch graphviz
pip install torchviz
model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))
x = torch.randn(1, 8)
y = model(x)
make_dot(y.mean(), params=dict(model.named_parameters()), show_attrs=True, show_saved=True)
- 显示图片中的关键点
def show_landmarks(image, landmarks):
"""Show image with landmarks"""
plt.imshow(image)
plt.scatter(landmarks[:, 0], landmarks[:, 1], s=10, marker='.', c='r')
plt.pause(0.001) # pause a bit so that plots are updated
plt.figure()
show_landmarks(io.imread(os.path.join('data/faces/', img_name)),
landmarks)
plt.show()
【AI】PytorchSegmentCode的更多相关文章
- 【AI】Exponential Stochastic Cellular Automata for Massively Parallel Inference - 大规模并行推理的指数随机元胞自动机
[论文标题]Exponential Stochastic Cellular Automata for Massively Parallel Inference (19th-ICAIS,PMLR ...
- 【AI】【人工智能】【计算机】人工智能工程技术人员等职业信息公示
人社厅发[2019]48号 各省.自治区.直辖市及新疆生产建设兵团人力资源社会保障厅(局).市场监管局.统计局,国务院各部门.各直属机构.各中央企业.有关社会组织人事劳动保障工作机构,中央军委政治工作 ...
- 【AI】Android Pie中引入的AI功能
前言 “无AI,不未来”,绝对不是一句豪情壮语,AI早已进入到了我们生活当中.去年Google发布的Android Pie系统在AI功能方面就做了重大革新,本文就对Google在新系统中引入的AI功能 ...
- 【AI】Computing Machinery and Intelligence - 计算机器与智能
[论文标题] Computing Machinery and Intelligence (1950) [论文作者] A. M. Turing (Alan Mathison Turing) [论文链接] ...
- 【AI】【计算机】【中国人工智能学会通讯】【学会通讯2019年第01期】中国人工智能学会重磅发布 《2018 人工智能产业创新评估白皮书》
封面: 中国人工智能学会重磅发布 <2018 人工智能产业创新评估白皮书> < 2018 人工智能产业创新评估白皮书>由中国人工智能学会.国家工信安全中心.华夏幸福产业研究院. ...
- 【AI】蒙特卡洛搜索树
http://jeffbradberry.com/posts/2015/09/intro-to-monte-carlo-tree-search/ 蒙特卡洛方法与随机优化: http://iacs-co ...
- 【AI】PaddlePaddle-Docker运行
1.参考官方安装Docker环境,使用一键安装包安装 https://www.jianshu.com/p/b2766173d754 http://www.paddlepaddle.org/docume ...
- 【AI】神经网络基本词汇
neural networks 神经网络activation function 激活函数hyperbolic tangent 双曲正切函数bias units 偏置项activation 激活值for ...
- 【AI】基本概念-准确率、精准率、召回率的理解
样本全集:TP+FP+FN+TN TP:样本为正,预测结果为正 FP:样本为负,预测结果为正 TN:样本为负,预测结果为负 FN:样本为正,预测结果为负 准确率(accuracy):(TP+TN)/ ...
随机推荐
- python 字符串 增、删、改、查基本操作
private static String TAG = "MainActivity"; private String str = " a,bB,1cCcc,2dDd d2 ...
- 给potplayer配置iptv源,看所有你想看的电视
目录 一.展示: 二.下载 三.播放 一.展示: 二.下载 Github 上的开源项目:iptv-org/iptv 传送门: https://github.com/iptv-org/iptv 该项目包 ...
- [刘阳Java]_InternalResourceViewResolver视图解析器_第6讲
SpringMVC在处理器方法中通常返回的是逻辑视图,如何定位到真正的页面,就需要通过视图解析器 InternalResourceViewResolver是SpringMVC中比较常用视图解析器. 网 ...
- WSL2:Windows 亲生的 Linux 子系统
作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...
- 北京大公司二面:了解Redis持久化机制吗?
今日总结 Redis持久化机制:RDB和AOF RDB持久化:定时任务,BGSAVE命令 fork一个子进程生成RDB文件(二进制) AOF持久化:根据配置将写命令存储至日志文件中,顺序写&& ...
- oracle 密码详解以及破解
参考的相关资料等: https://docs.oracle.com/en/database/oracle/oracle-database/18/spmsu/finding-and-resetting- ...
- PAT乙级:1061 判断题 (15分)
PAT乙级:1061 判断题 (15分) 题干 判断题的评判很简单,本题就要求你写个简单的程序帮助老师判题并统计学生们判断题的得分. 输入格式: 输入在第一行给出两个不超过 100 的正整数 N 和 ...
- MVC从客户端中检测到有潜在危险的Request.Form值的解决方法
1.ASPX页面 在页面头部的page中加入ValidateRequest="false" 2.web.config中配置validateRequest="false&q ...
- Mybatis学习笔记-日志
日志工厂 如果一个数据库操作出现异常,在排错时,则需要日志 SLF4J Apache Commons Logging(COMMONS_LOGGING) LOG4J LOG4J2 JDK logging ...
- 【Android】真机调试新姿势:无线连接
由于工作需要,需要无线连接手机调试,特意百度了一下 在进行Android开发时,一般我们都是用usb线把手机和电脑连接起来进行调试工作.但如果你觉得这样不够酷的话,可以尝试一下无线连接,颇简单,GO! ...