GPIO原理与配置(跑马灯,蜂鸣器,按键)
一。STM32 GPIO固件库函数配置方法
1. 根据需要在项目中删掉一些不用的固件库文件,保留有用的固件库文件
2. 在stm32f10x_conf.h中注释掉这些不用的头文件
3. STM32的IO口可以由软件配置成如下8种模式(4种输入模式,4种输出模式)
分别在CRL寄存器和CRH寄存器中配置,配置每一个IO口需要4位来配置
2位MODE位----配置是输入模式还是输出模式
2位CNF位---根据MODE位的配置来确定是哪种输入模式或输出模式
a。输入浮空
b。输入上拉
c。输入下拉
d。模拟输入
e。开漏输出
f。推挽输出
g。推挽式复用功能
h。开漏复用功能
配置函数
void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct);
4。GPIO输入值的读取
IDR是一个端口输入数据寄存器,只用了低16位。
操作IDR寄存器读取IO端口数据是通过GPIO_ReadInputDataBit函数实现的:
uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
比如我要读 GPIOA.5 的电平状态,那么方法是:
GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_5); uint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx);
5. 往某个IO口输出数据
ODR 是一个端口输出数据寄存器,也只用了低 16 位。该寄存器为可读写,从该寄存器读出来的数据可以用于判断当前 IO 口的输出状态。而向该寄存器写数据,则可以控制某个 IO 口的输出电平。
在固件库中设置 ODR 寄存器的值来控制 IO 口的输出状态是通过函数 GPIO_Write 来实现的:
void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal);
该函数一般用来往一次性一个 GPIO 的多个端口设值。
BSRR 寄存器是端口位设置/清除寄存器。该寄存器和 ODR 寄存器具有类似的作用,都可以用来设置 GPIO 端口的输出位是 1 还是 0。
低16位,往某个IO口写1对应高电平,写0不起任何作用
高16位,如果往某个IO口写1,则对应IO口为低电平,写0不起任何作用
void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin); void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
6. GPIO的使用步骤
1) 使能 IO 口时钟。调用函数为 RCC_APB2PeriphClockCmd()。
2) 初始化 IO 参数。调用函数 GPIO_Init();
3) 操作 IO。
二。跑马灯实验
1.在项目中添加HARDWARE目录,在里面新建LED目录
2.项目中添加led.c文件以及头文件
//led.h文件 #ifndef __LED_H #define __LED_H #include "sys.h" #define LED0 PBout(5)// PB5 #define LED1 PEout(5)// PE5 void LED_Init(void); //初始化 #endif led.c文件 #include "led.h" void LED_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOE, ENABLE); //使能PB,PE端口时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //LED0-->PB.5 端口设置 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //IO口速度为50MHz GPIO_Init(GPIOB, &GPIO_InitStructure); //根据设定参数初始化GPIOB.5 GPIO_SetBits(GPIOB,GPIO_Pin_5); //PB.5 输出高 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //LED1-->PE.5 端口设置,推挽输出 GPIO_Init(GPIOE, &GPIO_InitStructure); //推挽输出,IO口速度为50MHz GPIO_SetBits(GPIOE,GPIO_Pin_5); //PE.5 输出高 }
三。位带操作
位带操作简单的说, 就是把每个比特膨胀为一个 32 位的字,当访问这些字的时候就达到了访问比特的目的。
并不是每一个位都可以映射到一个字。
在sys.h中的定义
//IO口操作,只对单一的IO口 //确保n的值小于16 #define PAout(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出 #define PAin(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入 #define PBout(n) BIT_ADDR(GPIOB_ODR_Addr,n) //输出 #define PBin(n) BIT_ADDR(GPIOB_IDR_Addr,n) //输入 #define PCout(n) BIT_ADDR(GPIOC_ODR_Addr,n) //输出 #define PCin(n) BIT_ADDR(GPIOC_IDR_Addr,n) //ÊäÈë #define PDout(n) BIT_ADDR(GPIOD_ODR_Addr,n) //输出 #define PDin(n) BIT_ADDR(GPIOD_IDR_Addr,n) //输入 #define PEout(n) BIT_ADDR(GPIOE_ODR_Addr,n) //输出 #define PEin(n) BIT_ADDR(GPIOE_IDR_Addr,n) //输入 #define PFout(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出 #define PFin(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入 #define PGout(n) BIT_ADDR(GPIOG_ODR_Addr,n) //输出 #define PGin(n) BIT_ADDR(GPIOG_IDR_Addr,n) //输入
四。蜂鸣器实验
BEEP输出高电平,三极管导通,蜂鸣器响
五。按键输入实验
因为要检测按键,所以IO口要设置成输入模式
//按键初始化函数 void KEY_Init(void) //IO 初始化 { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOE,ENABLE); //使能 PORTA,PORTE 时钟 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4;//GPIOE.2~4 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //PE2,PE3,PE4设置成上拉输入 GPIO_Init(GPIOE, &GPIO_InitStructure); //初始化 GPIOE2,3,4 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; //初始化 WK_UP-->GPIOA.0 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //PA0 设置成下拉输入 GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化 GPIOA.0 } //按键处理函数,不支持多个按键同时按下 //返回按键值 //mode:0,不支持连续按;1,支持连续按; //0,没有任何按键按下;1, KEY0 按下;2, KEY1 按下;3, KEY2 按下 ;4, KEY3 按下 WK_UP //注意此函数有响应优先级,KEY0>KEY1>KEY2>KEY3!! u8 KEY_Scan(u8 mode) { static u8 key_up=1; //按键按松开标志 if(mode)key_up=1; //支持连按 if(key_up&&(KEY0==0||KEY1==0||KEY2==0||KEY3==1)) { delay_ms(10); //去抖动 key_up=0; if(KEY0==0)return KEY_RIGHT; else if(KEY1==0)return KEY_DOWN; else if(KEY2==0)return KEY_LEFT; else if(KEY3==1)return KEY_UP; }else if(KEY0==1&&KEY1==1&&KEY2==1&&KEY3==0)key_up=1; return 0; // 无按键按下 }
定义了一个变量key_up保存按键的状态,如果支持连续按下,当按键按下后不用管以前按键的状态,返回这次按键按下有效,如果不支持连续按下,就要看key_up的状态,如果以前没有按下,则返回这次按键有效,如果以前已经按下了,key_up=0,则这次按键按下无效。
key.h文件
#ifndef __KEY_H #define __KEY_H #include "sys.h" #define KEY0 GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_4) //读取按键 0 #define KEY1 GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_3) //读取按键 1 #define KEY2 GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_2) //读取按键 2 #define KEY3 GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0) //读取按键 3(WK_UP) #define KEY_UP 4 #define KEY_LEFT 3 #define KEY_DOWN 2 #define KEY_RIGHT 1 void KEY_Init(void); //IO 初始化 u8 KEY_Scan(u8); //按键扫描函数 #endif
分享些相应的学习资料便于后期的学习参考
蜂鸣器播放音乐
http://www.makeru.com.cn/live/1758_325.html?s=45051
(stm32串口应用)
http://www.makeru.com.cn/live/1392_1164.html?s=45051
(DMA专题讲解)
http://www.makeru.com.cn/live/1392_1048.html?s=45051
stm32 如何用DMA搬运数据
http://www.makeru.com.cn/live/detail/1484.html?s=45051
GPIO原理与配置(跑马灯,蜂鸣器,按键)的更多相关文章
- STM32F407 跑马灯 寄存器版 个人笔记
更多原理请参考跑马灯 库函数版 个人笔记 步骤 使能IO口时钟.配置相关寄存器寄存器RCC->AHB1ENR 初始化IO口模式.配置四个配置寄存器 GPIOx_MODER/ GPIOx_OTYP ...
- Vue学习笔记四:跑马灯效果
目录 跑马灯原理 HTML 箭头函数 计时器 跑马灯效果 跑马灯原理 先讲讲跑马灯的原理,就是一行字,会滚动,思路是这样的,使用substring方法,一个获取字符串的第一个字,一个获取1后面所有的字 ...
- 【STM32H7教程】第18章 STM32H7的GPIO应用之跑马灯
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第18章 STM32H7的GPIO应用之跑马灯 本 ...
- stm32寄存器版学习笔记01 GPIO口的配置(LED、按键)
STM32的I/O口可以由软件配置成如下8种模式:输入浮空.输入上拉.输入下拉.模拟输入.开漏输出.推挽输出.推挽式复用功能及开漏复用功能.每个I/O口由7个寄存器来控制:配置模式的端口配置寄存器CR ...
- ARM开发(1) 基于STM32的LED跑马灯
一 跑马灯原理: 1.1 本实验实现2个led的跑马灯效果,即2个led交替闪烁. 1.2 实验思路:根据电路图原理,给led相关引脚赋予高低电平,实现电路的导通,使led灯发光. 1.3 开发 ...
- 纯css3跑马灯demo
我们写跑马灯一般都是用js控制定时器不断循环产生,但是定时器消耗比较大,特别是程序中很多用到定时器的时候,感觉有的时候比较卡.但是css3样式一般不会.这里主要的思路就是用css3代替js定时器实现一 ...
- 【跑马灯】纯css3跑马灯demo
我们写跑马灯一般都是用js控制定时器不断循环产生,但是定时器消耗比较大,特别是程序中很多用到定时器的时候,感觉有的时候比较卡.但是css3样式一般不会.这里主要的思路就是用css3代替js定时器实现一 ...
- 嵌入式02 STM32 实验04跑马灯
开学STM32 跑马灯的实验主要就是了解GPIO口的配置及使用,我这里是使用库函数进行编程,主要需要设置以下两方面: 1.使能需要使用的IO口的时钟,一共有A.B.C.D.E.F.G七组IO口 2.初 ...
- 【Android】不依赖焦点和选中的TextView跑马灯【2】
前言 之前有写一篇TextView跑马灯的效果,后来实际项目中有发现新的问题,比如还是无法自动跑,文本超过了显示区域就截取的问题,今天换了一种思路来实现,更简单更好用. 声明 欢迎转载,但请保留文章原 ...
随机推荐
- LVS负载均衡集群--DR模式部署
目录: 一.LVS-DR数据包流向分析 二.DR 模式的特点 三.LVS-DR中的ARP问题 四.DR模式 LVS负载均衡群集部署 一.LVS-DR数据包流向分析 1.为方便进行原理分析,将clien ...
- form表单提交失败
在使用一个登录/注册模板的时候,发现form表单不了,但是删除模板引用的js后就正常了,查看js文件的源码,有一个 const firstForm = document.getElementById( ...
- PHP多文件上传格式化
文件上传是所有web应用中最常见的功能,而PHP实现这一功能也非常的简单,只需要前端设置表单的 enctype 值为 multipart/form-data 之后,我们就可以通过 $_FILES 获得 ...
- webpack learn1-webpack-dev-server的配置和使用3
首先输入命令来安装webpack-dev-server npm i webpack-dev-server 在package.json文件中添加代码: "scripts": { &q ...
- 软件测试从业者必备的Linux命令(完整篇)
观点: 关于Linux,测试从业者,看这篇文章就够了 . 具体,往下看 : 网上关于Linux资料太多.太杂,学习没有重点,特别是对于没有基础的从业者,期望通过那些文档,去自学掌握Linux,可能性太 ...
- test,exec,match,replace方法区别 正则
这四种方法都是用来检测字符串是否包含某一子串或是否匹配否个正则表达式 test方法,匹配返回true,不匹配返回false match,匹配返回匹配到的数组(包含多次/g),匹配一次返回包含匹配子串的 ...
- HTML 网页开发、CSS 基础语法——六. HTML基本结构
1.基本骨架 HTML文件最基本的四个标签,组成了网页的基本骨架,包括:<html>. <head>.<title>.<body>四组标签. ① < ...
- 鸿蒙内核源码分析(调度故事篇) | 用故事说内核调度 | 百篇博客分析OpenHarmony源码 | v9.07
百篇博客系列篇.本篇为: v09.xx 鸿蒙内核源码分析(调度故事篇) | 用故事说内核调度过程 | 51.c.h .o 前因后果相关篇为: v08.xx 鸿蒙内核源码分析(总目录) | 百万汉字注解 ...
- Unity——基于UGUI的UI框架
基于UGUI的UI框架 一.Demo展示 二.关键类 MonoSingle 继承MonoBehaviour的单例基类:做了一些特殊处理: 保证场景中必须有GameInit名称的物体,所有单例管理器脚本 ...
- (Java)面向对象的三大特征
封装.继承与多态 封装 封装的作用(好处) 提高程序安全性,保护数据 隐藏代码的实现细节 统一接口 增加系统可维护性 属性私有(关键字private) 加上Private可使该属性私有于一个类,在其他 ...