题面传送门

首先写出式子:

\[ans=\sum\limits_{i=0}^m\dbinom{m}{i}\dbinom{n-m}{k-i}·i^L
\]

看到后面有个幂,我们看它不爽,因此考虑将其拆开,具体来说,根据普通幂转下降幂的式子:

\[i^L=\sum\limits_{j=1}^L\begin{Bmatrix}L\\j\end{Bmatrix}\dbinom{i}{j}·j!
\]

我们可以得到

\[ans=\sum\limits_{i=0}^m\dbinom{m}{i}\dbinom{n-m}{k-i}\sum\limits_{j=1}^L\begin{Bmatrix}L\\j\end{Bmatrix}\dbinom{i}{j}·j!
\]

交换求和号

\[ans=\sum\limits_{j=1}^L\begin{Bmatrix}L\\j\end{Bmatrix}\sum\limits_{i=0}^m\dbinom{m}{i}\dbinom{n-m}{k-i}\dbinom{i}{j}
\]

调用吸收恒等式把 \(\dbinom{m}{i}\dbinom{i}{j}\) 化简开来可以得到

\[\dbinom{m}{i}\dbinom{i}{j}=\dbinom{m}{j}\dbinom{m-j}{i-j}
\]

代入原式

\[ans=\sum\limits_{j=1}^L\begin{Bmatrix}L\\j\end{Bmatrix}\sum\limits_{i=0}^m\dbinom{m}{j}\dbinom{m-j}{i-j}\dbinom{n-m}{k-i}
\]

调用范德蒙德卷积化简 \(\sum\limits_{i=0}^m\dbinom{m-j}{i-j}\dbinom{n-m}{k-i}\)​ 可得:

\[ans=\sum\limits_{j=1}^L\begin{Bmatrix}L\\j\end{Bmatrix}\dbinom{m}{j}\dbinom{n-j}{k-j}
\]

注意到这题 \(L\) 数据范围不大,因此可以 NTT 预处理处 \(\begin{Bmatrix}L\\j\end{Bmatrix}\),这样可以 \(\mathcal O(N+L\log L+SL)\) 求解原问题。

注意常数问题,建议把组合数全部拆开来约分,这样可以有效地减少常数。

const int pr=3;
const int ipr=332748118;
const int MOD=998244353;
const int MAXN=2e7;
const int MAXP=1<<19;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int fac[MAXN+5],ifac[MAXN+5];
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int n,int k){
if(n<0||k<0||n<k) return 0;
return 1ll*fac[n]*ifac[k]%MOD*ifac[n-k]%MOD;
}
int rev[MAXP+5];
void NTT(vector<int> &a,int len,int type){
int lg=31-__builtin_clz(len);
for(int i=0;i<len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<lg-1);
for(int i=0;i<len;i++) if(rev[i]<i) swap(a[i],a[rev[i]]);
for(int i=2;i<=len;i<<=1){
int W=qpow((type<0)?ipr:pr,(MOD-1)/i);
for(int j=0;j<len;j+=i){
for(int k=0,w=1;k<(i>>1);k++,w=1ll*w*W%MOD){
int X=a[j+k],Y=1ll*a[(i>>1)+j+k]*w%MOD;
a[j+k]=(X+Y)%MOD;a[(i>>1)+j+k]=(X-Y+MOD)%MOD;
}
}
}
if(type==-1){
int ivn=qpow(len,MOD-2);
for(int i=0;i<len;i++) a[i]=1ll*a[i]*ivn%MOD;
}
}
int n,m,s,l;
vector<int> conv(vector<int> a,vector<int> b){
int LEN=1;while(LEN<a.size()+b.size()) LEN<<=1;
a.resize(LEN,0);b.resize(LEN,0);NTT(a,LEN,1);NTT(b,LEN,1);
for(int i=0;i<LEN;i++) a[i]=1ll*a[i]*b[i]%MOD;NTT(a,LEN,-1);
return a;
}
int main(){
scanf("%d%d%d%d",&n,&m,&s,&l);init_fac(MAXN);
vector<int> a(l+1),b(l+1);
for(int i=1;i<=l;i++) a[i]=1ll*qpow(i,l)*ifac[i]%MOD;
for(int i=0;i<=l;i++) b[i]=(i&1)?(MOD-ifac[i]):ifac[i];
vector<int> c=conv(a,b);
// for(int i=1;i<=l;i++) printf("%d\n",c[i]);
while(s--){
int n,m,k;scanf("%d%d%d",&n,&m,&k);int res=0;
for(int i=1;i<=min(l,min(m,k));i++) res=(res+1ll*c[i]*fac[n-i]%MOD*ifac[m-i]%MOD*ifac[k-i])%MOD;
printf("%d\n",1ll*res*fac[m]%MOD*ifac[n-k]%MOD*qpow(binom(n,k),MOD-2)%MOD);
}
return 0;
}

洛谷 P2791 - 幼儿园篮球题(第二类斯特林数)的更多相关文章

  1. 【洛谷2791】 幼儿园篮球题 第二类斯特林数+NTT

    求 \(\sum_{i=0}^{k}\binom{m}{i}\binom{n-m}{k-i}i^L\) \((1\leqslant n,m\leqslant 2\times 10^7,1\leqsla ...

  2. 洛谷 P2791 幼儿园篮球题

    洛谷 P2791 幼儿园篮球题 https://www.luogu.org/problemnew/show/P2791 我喜欢唱♂跳♂rap♂篮球 要求的是:\(\sum_{i=0}^kC_m^iC_ ...

  3. 【洛谷2791】幼儿园篮球题(第二类斯特林数,NTT)

    [洛谷2791]幼儿园篮球题(第二类斯特林数,NTT) 题面 洛谷 题解 对于每一组询问,要求的东西本质上就是: \[\sum_{i=0}^{k}{m\choose i}{n-m\choose k-i ...

  4. [题解] LOJ 3300 洛谷 P6620 [省选联考 2020 A 卷] 组合数问题 数学,第二类斯特林数,下降幂

    题目 题目里要求的是: \[\sum_{k=0}^n f(k) \times X^k \times \binom nk \] 这里面出现了给定的多项式,还有组合数,这种题目的套路就是先把给定的普通多项 ...

  5. 【CF932E】Team Work(第二类斯特林数)

    [CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子 ...

  6. 【CF961G】Partitions(第二类斯特林数)

    [CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...

  7. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

  8. Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...

  9. CF932E Team Work(第二类斯特林数)

    传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...

随机推荐

  1. 【UE4 C++】Actor 与 Component —— 创建、销毁

    Actor的生成与销毁 创建Actor实例 UClass* TSubclassOf<T> SpawnActor() UPROPERTY(EditAnywhere, Category = & ...

  2. Scrum Meeting 0529

    零.说明 日期:2021-5-29 任务:简要汇报七日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 七日内已完成的任务 后两日计划完成的任务 困难 qsy PM&前端 完成后端管 ...

  3. 关于linux下编译的几点知识

    1.-L.-rpath 和 rpath_link的区别 参考博客文章:https://www.cnblogs.com/candl/p/7358384.html (1)-rpath和-rpath-lin ...

  4. 『学了就忘』Linux基础 — 17、远程服务器关机及重启时的注意事项

    目录 1.为什么远程服务器不能关机 2.远程服务器重启时需要注意两点 3.不要在服务器访问高峰运行高负载命令 4.远程配置防火墙时不要把自己踢出服务器 5.指定合理的密码规范并定期更新 6.合理分配权 ...

  5. 更优于 Shellinabox 的 web shell 工具 -- ttyd

    ttyd 是一个运行在服务端,客户端通过web浏览器访问从而连接后台 tty (pts伪终端)接口的程序,把 shell 终端搬到 web 浏览器中. WebSocket WebSocket 是 HT ...

  6. 基于eNSP的NAT/NAPT协议仿真实践

    一. 基本原理 eNSP(Enterprise Network Simulation Platform)是一款由华为提供的.可扩展的.图形化 操作的网络仿真工具平台,主要对企业网络路由器.交换机进行软 ...

  7. PE节表详细分析

    目录 PE节表详细分析 0x00 前言 0x01 PE节表分析 节表结构 节表数量 节表名字 节表大小 节位置 节表属性 0x02 代码编写 PE节表详细分析 0x00 前言 上一篇文章我们学习了PE ...

  8. journalctl常用命令

    journalctl -xe 查看全部日志# 以flow形式查看日志 $ journalctl -f # 查看内核日志 $ journalctl -k # 查看指定服务日志 $ journalctl ...

  9. Java测试开发--Maven用法(三)

    一.Maven简介 Maven 是java项目构建工具,统一包的管理,统一项目管理.项目编译,测试打包.部署. 二.Maven工程搭建: 1.新建maven工程,如下图 2. 新建工程后,jdk使用的 ...

  10. JMeter学习笔记--录制脚本(一)

    ---------------------------------------------------------------------------------------------------- ...