前面我们已经介绍了基因组选择的各类模型,今天主要来了解一下做GS有哪些可用的软件和工具。基因组选择处在热门研究阶段,每年都有不少新工具开发出来,可分析的软件非常之多,为了便于大家更加清晰地了解,这里我将它们分为免费开源包/库、成熟软件、WEB/GUI工具三类,用户使用难度依次降低。

1. 免费开源包/库

R和Python语言作为开源软件的代表,在数据分析领域有着不可替代的优势。近几年大部分GS分析软件都是由这两种语言开发。免费开源的R包或者Python库使用起来比较灵活,可根据用户的具体需求随时变化参数来获得最佳性能,但对使用用户而言需要有一定的数据分析基础。

1.1 R包

1.2 Python库

  • SeqBreed

    https://github.com/miguelperezenciso/SeqBreed

    主要能实现常见的BLUP类模型,也可以灵活地评估特定场景中地遗传结构,如QTN数目、作用及性状数量等来提升预测性能。

  • 常见机器学习Python工具:经典机器学习模块如sklearn,深度学习框架如Karas、TensorFlow、PyTorch等。

2. 成熟软件

动物基因组选择发展较早,因此成熟的遗传评估软件一开始是专门为动物育种而设计开发,只有其中一部分功能适用于植物育种。

早期的软件一部分是商业软件,使用需付费。一部分虽然免费,但允许使用的数据量小,商用需授权。它们大多用FORTRAN、C等语言编写,运行稳定且运算较快。但模型比较单一,基本都是通过混合线性模型来评估遗传参数,建立的大多是BLUP类模型。

近几年越来越多的高性能免费软件趋于成熟,随着海量数据的积累和实际应用的需求,这类软件将显得越来越重要。

3. WEB/GUI工具

基于网页或图形界面的工具目前还较少,因此对于普通用户使用GS技术,仍有一定的门槛。以下几个工具仅供参考。

以上仅列出了常见的GS分析工具及其简介,更多的软件未能一一列出(如数据前期的清洗、指标评价、数据可视化等),具体的用法也可以去查看对应的文档。

【百奥云GS专栏】全基因组选择之工具篇的更多相关文章

  1. 【百奥云GS专栏】全基因组选择之模型篇

    目录 1. 前言 2. BLUP方法 ABLUP GBLUP ssGBLUP RRBLUP 3. 贝叶斯方法 BayesA BayesB BayesC/Cπ/Dπ Bayesian Lasso 4. ...

  2. 【百奥云GS专栏】1-全基因组选择介绍

    目录 什么是基因组选择? 基因组选择技术的发展 基因组选择的原理和流程 基因组选择的模型 基因组选择的展望 参考资料 什么是基因组选择? 基因组选择(Genomic Selection,简称GS)这一 ...

  3. 【GS文献】全基因组选择模型研究进展及展望

    目录 1. GS概况 2. GS模型 1)直接法 GBLUP 直接法的模型改进 ①单随机效应 ②多随机效应 2)间接法 间接法模型 基于间接法的模型改进 3. GS模型比较 模型比较结论 4.问题及展 ...

  4. 【GS文献】植物全基因组选择育种技术原理与研究进展

    目录 1. 优势杂交育种预测 2. GS育种原理与模型算法 岭回归和LASSO回归 贝叶斯方法 GBLUP和RRBLUP 偏最小二乘法 支持向量机/支持向量回归 其他方法 3. 模型预测能力验证 4. ...

  5. 全基因组选择育种(GS)简介

    全基因组选择(Genomic selection, GS)是一种利用覆盖全基因组的高密度标记进行选择育种的新方法,可通过早期选择缩短世代间隔,提高育种值(Genomic Estimated Breed ...

  6. 【GS模型】全基因组选择之rrBLUP

    目录 1. 理论 2. 实操 2.1 rrBLUP包简介 2.2 实操 3. 补充说明 关于模型 关于交叉验证 参考资料 1. 理论 rrBLUP是基因组选择最常用的模型之一,也是间接法模型的代表.回 ...

  7. 【GS文献】基因组选择技术在农业动物育种中的应用

    中国农业大学等多家单位2017年合作发表在<遗传>杂志上的综述,笔记之. 作者中还有李宁院士,不胜唏嘘. 1.概述 GS的两大难题:基因组分型的成本,基因组育种值(genomic esti ...

  8. 【GS文献】基因组选择在植物分子育种应用的最新综述(2020)

    目录 1. 简介 2. BLUP类模型 3. Bayesian类模型 4. 机器学习 5. GWAS辅助的GS 6. 杂交育种 7. 多性状 8. 长期选择 9. 预测准确性评估 10. GS到植物育 ...

  9. 【GS应用】基因组选择在杂交玉米上的应用示例

    目录 GS两步走 示例 缩短周期和成本 分类 杂交类型 试验研究 选择响应 选择的强度 选择的周期 预测能力 数据分析的注意事项 GS实施 优缺点 GS的成功 展望 GS两步走 示例 缩短周期和成本 ...

随机推荐

  1. sqlmap--tamper使用技巧

    apostrophemask.py 适用数据库:ALL 作用:将引号替换为utf-8,用于过滤单引号 使用脚本前: tamper("1 AND '1'='1") 使用脚本后: 1A ...

  2. Linux入门所必备的Linux命令和C语言基础

    文件和目录(底部有视频资料) cd /home 进入 '/ home' 目录' cd - 返回上一级目录 cd -/- 返回上两级目录 cd 进入个人的主目录 cd ~user1 进入个人的主目录 c ...

  3. 数列极限计算中运用皮亚诺Taylor展开巧解

    这是讲义里比较精华的几个题目,今晚翻看也是想到了,总结出来(处理k/n2形式). 推广式子如下: 例题如下:

  4. 高频面试题:一张图彻底搞懂Spring循环依赖

    1 什么是循环依赖? 如下图所示: BeanA类依赖了BeanB类,同时BeanB类又依赖了BeanA类.这种依赖关系形成了一个闭环,我们把这种依赖关系就称之为循环依赖.同理,再如下图的情况: 上图中 ...

  5. wifi 热点配置最优信道

    wifi热点服务hostapd启动需要配置hostad.conf文件,其中有一个参数channel是用来配置信道的,信道的可选参数如下: # channel 1-14 is 2.4 GHz ; cha ...

  6. 进程间通信消息队列msgsnd执行:Invlid argument——万恶的经验主义

    最近在搞进程间通信,首先在我的ubuntu 14.04上写了接口和测试demo,编译和执行都OK,,代码如下: 接口文件ipcmsg.h /* ipcmsg.h */ #ifndef H_MSGIPC ...

  7. Luogu P1297 [国家集训队]单选错位 | 概率与期望

    题目链接 题解: 单独考虑每一道题目对答案的贡献. 设$g_i$表示gx在第$i$道题目的答案是否正确(1表示正确,0表示不正确),则$P(g_i=1)$表示gx在第$i$道题目的答案正确的概率. 我 ...

  8. 禁用root直接远程登录,使用普通账号登录后再切换root

    1.创建一个普通用户 #useradd test 2.给test设置密码 #passwd test 3.禁用root远程登录 #vim /etc/ssh/sshd_config #PermitRoot ...

  9. LOTO实践【干货】电压比较器的快速应用

    LOTO实践[干货]电压比较器的快速应用 话不多说先上图: 最近出差去客户那边做设备调试,现场如上图,其中我负责的技术部分包含了一个掉落物监测的功能.硬件上的原理比较简单,发射板上的红外发射头阵列,以 ...

  10. Linux下的 sniff-andthen-spoof程序编写

    Linux下的 sniff-andthen-spoof程序编写 一.任务描述 在本任务中,您将结合嗅探和欺骗技术来实现以下嗅探然后欺骗程序.你需要两台机器在同一个局域网.从机器A ping IP_X, ...