Solution -「CF 1391E」Pairs of Pairs
\(\mathcal{Description}\)
Link.
给定一个 \(n\) 个点 \(m\) 条边的无向图,在其上找到一条包括不少于 \(\lceil\frac{n}2\rceil\) 个结点的简单路径;或者将至少 \(\lceil\frac{n}2\rceil\) 个结点划分为若干二元组,使得任意两个不同二元组内四个结点的导出子图含有至多两条边。多组数据。
\(n,\sum n\le5\times10^5\),\(m,\sum m\le10^6\)。
\(\mathcal{Solution}\)
去分开刚两个 NP 问题,请。
这种给两个问题让你解其中一个的,显然以尝试求解一个失败为条件来求解另一个,不可能分开解的。比如本题,随便选一个起点 DFS 全图,若发现深度不小于 \(\lceil\frac{n}2\rceil\) 的 DFS 树上结点,回答第一问,结束。否则,问题转化为:一个图的 DFS 满足树深 \(<\lceil\frac{n}2\rceil\),求解第二问。
由于 DFS 树没有横叉边,所以在树上某一结点的左子树选一个,右子树选一个来组成一对,这两对间的导出子图显然不超过两条边。所以用 std::vector
记录子树内匹配剩下的结点,在父亲处与兄弟子树剩下的结点配对即可。可以证明在树深 \(<\lceil\frac{n}2\rceil\) 的情况下一定有解。
复杂度 \(\mathcal O(\sum n+m)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#include <vector>
#include <cstdlib>
#include <assert.h>
inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = ~ x + 1;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
const int MAXN = 5e5, MAXM = 1e6;
int n, m, ecnt, head[MAXN + 5], p[MAXN + 5];
bool vis[MAXN + 5], solved;
std::vector<int> path, rest[MAXN + 5];
std::vector<std::pair<int, int> > pairs;
struct Edge { int to, nxt; } graph[MAXM * 2 + 5];
inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
}
inline void clear () {
ecnt = solved = 0, path.clear (), pairs.clear ();
for ( int i = 1; i <= n; ++ i ) head[i] = vis[i] = 0, rest[i].clear ();
}
inline void printPath () {
solved = true;
printf ( "PATH\n%d", ( int ) path.size () );
for ( int i = 0; i ^ path.size (); ++ i ) {
printf ( "%c%d", i ? ' ' : '\n', path[i] );
}
putchar ( '\n' );
}
inline void printPairs () {
solved = true;
printf ( "PAIRING\n%d\n", ( int ) pairs.size () );
for ( auto p: pairs ) printf ( "%d %d\n", p.first, p.second );
}
inline void solve ( const int u ) {
if ( solved ) return ;
vis[u] = true, path.push_back ( u ), p[u] = u;
if ( ( int ) path.size () << 1 >= n ) printPath ();
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( !vis[v = graph[i].to] ) {
solve ( v ), path.pop_back ();
if ( solved ) return ;
while ( !rest[p[u]].empty () && !rest[p[v]].empty () ) {
pairs.push_back ( { rest[p[u]].back (), rest[p[v]].back () } );
if ( ( int ) pairs.size () << 2 >= n ) return printPairs ();
rest[p[u]].pop_back (), rest[p[v]].pop_back ();
}
p[u] = rest[p[u]].empty () ? p[v] : p[u];
}
}
rest[p[u]].push_back ( u );
}
int main () {
for ( int T = rint (); T --; ) {
n = rint (), m = rint (), clear ();
for ( int i = 1, u, v; i <= m; ++ i ) {
u = rint (), v = rint ();
link ( u, v ), link ( v, u );
}
solve ( 1 );
assert ( solved );
}
return 0;
}
\(\mathcal{Details}\)
std::vector
的操作能少压入就少压入啊……不知道怎么内存就挂掉了。
Solution -「CF 1391E」Pairs of Pairs的更多相关文章
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- C#进阶——从应用上理解异步编程的作用(async / await)
欢迎来到学习摆脱又加深内卷篇 下面是学习异步编程的应用 1.首先,我们建一个winfrom的项目,界面如下: 2.然后先写一个耗时函数: /// <summary> /// 耗时工作 // ...
- 新增访客数量MR统计之Reduce和Runner相关准备
关注公众号:分享电脑学习回复"百度云盘" 可以免费获取所有学习文档的代码(不定期更新)云盘目录说明:tools目录是安装包res 目录是每一个课件对应的代码和资源等doc 目录是一 ...
- No shutdown animation in the electricity display only 1%
低电量自动关机时无关机动画 低电量自动关机时无关机动画1. 问题描述2. 分析3. solution4. 总结 1. 问题描述 DEFECT DESCRIPTION: No shutdown anim ...
- 园子的推广博文:欢迎收看 Apache Flink 技术峰会 FFA 2021 的视频回放
园子专属收看链接:https://developer.aliyun.com/special/ffa2021/live#?utm_content=g_1000316459 Flink Forward 是 ...
- 《剑指offer》面试题32 - I. 从上到下打印二叉树
问题描述 从上到下打印出二叉树的每个节点,同一层的节点按照从左到右的顺序打印. 例如: 给定二叉树: [3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 7 返回 ...
- 【小实验】rust的数组是在堆上分配还是在栈上分配的呢?
先看代码: fn main(){ let v = [1,2,3,4,5]; let addr = &v[0] as *const i32 as usize; println!("ar ...
- NOIP2020 排水系统
几度欲写,却望高精而却步,今习得__int128,君子报仇,一年不晚. NOIP2020 排水系统 DAG图,拓扑就好,核心难点在于毒瘤的分数的操作,毕竟只是T!只有分数相加,就很简单了. a/b + ...
- java-包与包之间的访问
1 package face_package; 2 3 import face_packagedemoA.DemoA; 4 5 /* 包(package) 6 * 1,对类文件进行分类管理. 7 * ...
- 前端 | Vue nextTick 获取更新后的 DOM
前两天在开发时遇到一个需求:打开对话框的时候自动聚焦其中的输入框.由于原生的 autofocus 属性不起作用,需要使用组件库提供的 focus 方法手动手动获取焦点.于是有如下代码: <el- ...
- django之django-debug-toolbar调试工具配置与使用
外部链接:https://blog.csdn.net/weixin_39198406/article/details/78821677 django-debug-toolbar的作用:进行性能调优,与 ...