Solution -「LOCAL」画画图
\(\mathcal{Description}\)
给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和。树形生成方式为随机取不连通两点连边直到全部连通。
\(n\le32000\)。
\(\mathcal{Solution}\)
考虑用中位数的标准姿势统计每条边的贡献——小于它的设为 \(-1\),大于它的设为 \(+1\),边权相等按编钦定大小关系。那么这条边的贡献就是路径两端权值加和为 \(0\) 的路径对数(显然每对路径连起来都是奇数路径)。
令 \(f(u,i)\) 表示 \(u\) 子树内到 \(u\) 路径权值和为 \(i\) 的结点数量。对于一条边 \((u,v)\),不妨设 \(u\) 是 \(v\) 的父亲,设我们已经得到了全树的 DP 信息,考虑到题目中随机树的期望深度为 \(\mathcal O(\sqrt n)\),所以暴力爬树统计 \(v\) 子树内和 \(v\) 子树外的信息即可求到当前答案。顺序枚举边,每条边仅会由 \(+1\) 变为 \(-1\),所以暴力仍然暴力爬树修改 DP 信息即可。实现上,利用树深限制,拿一个内存池储存 DP 信息;爬树统计时限制可能贡献答案的权值区间即可通过本题。
复杂度 \(\mathcal O(n^2)\),不过可以算出带一个 \(\frac{1}6\) 的常数,所以可过。
\(\mathcal{Code}\)
这里以直径中点作为根(为了和某毒瘤比赛卡常),不过随便选一个根都是可过的。
#include <queue>
#include <cstdio>
#include <cstring>
typedef long long LL;
const int MAXN = 32000, MAXSQRT = 180, MAXV = 1e6;
int n, ecnt, head[MAXN + 5], fa[MAXN + 5], dep[MAXN + 5], faw[MAXN + 5];
int mempool[MAXN * MAXSQRT * 2], *f[MAXN + 5], *frepos = mempool, *g;
int pre[MAXN + 5], buc[MAXV + 5], ori[MAXN + 5], down[MAXN + 5];
struct Edge { int to, cst, nxt; } graph[MAXN * 2 + 5];
struct EdgeSet { int u, v, w; } eset[MAXN + 5];
inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
}
inline int min_ ( const int a, const int b ) { return a < b ? a : b; }
inline int max_ ( const int a, const int b ) { return a < b ? b : a; }
inline void link ( const int s, const int t, const int c ) {
graph[++ ecnt] = { t, c, head[s] };
head[s] = ecnt;
}
inline void BFS ( const int s ) {
static std::queue<int> que;
que.push ( s ); dep[s] = 1;
while ( ! que.empty () ) {
int u = que.front (); que.pop ();
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ! dep[v = graph[i].to] ) {
pre[v] = u, dep[v] = dep[u] + 1;
que.push ( v );
}
}
}
}
inline void init ( const int u ) {
dep[u] = 0;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
fa[v] = u, faw[v] = 1, down[graph[i].cst] = v, init ( v );
if ( dep[v] + 1 > dep[u] ) dep[u] = dep[v] + 1;
}
}
f[u] = frepos += dep[u] + 1, frepos += dep[u] + 1;
}
inline void DP ( const int u ) {
*f[u] = 1;
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ fa[u] ) {
DP ( v );
for ( int j = -dep[v]; j <= dep[v]; ++ j ) f[u][j + 1] += f[v][j];
}
}
}
inline LL update ( const int s ) {
int l = -dep[s], r = dep[s]; faw[s] = -1;
for ( int u = fa[s], v = s, d1 = 0, d2 = 0; u; u = fa[v = u] ) {
d1 += v ^ s ? faw[v] : 1, d2 += faw[v];
for ( int i = -dep[s]; i <= dep[s]; ++ i ) {
f[u][i + d1] -= f[s][i];
f[u][i + d2] += f[s][i];
}
for ( int i = max_ ( -dep[u], l ), t = min_ ( dep[u], r ), d = d2 + 1; i <= t; ++ i ) {
g[i + d] += f[u][i] - f[v][i - faw[v]];
}
l -= faw[u], r -= faw[u];
}
LL ret = 0;
for ( int i = -dep[s]; i <= dep[s]; ++ i ) {
ret += 1ll * f[s][i] * g[-i];
g[-i] = 0;
}
return ret;
}
int main () {
n = rint (); int mxw = 0;
for ( int i = 1, u, v, w; i < n; ++ i ) {
u = rint (), v = rint (), w = rint ();
eset[i] = { u, v, w }, ++ buc[w];
if ( w > mxw ) mxw = w;
}
for ( int i = 2; i <= mxw; ++ i ) buc[i] += buc[i - 1];
for ( int i = 1; i < n; ++ i ) {
eset[i].w = buc[ori[buc[eset[i].w]] = eset[i].w] --;
link ( eset[i].u, eset[i].v, eset[i].w );
link ( eset[i].v, eset[i].u, eset[i].w );
}
BFS ( 1 );
int s = 0, t = 0;
for ( int i = 1; i <= n; ++ i ) {
if ( dep[i] > dep[s] ) s = i;
dep[i] = pre[i] = 0;
}
BFS ( s );
for ( int i = 1; i <= n; ++ i ) if ( dep[i] > dep[t] ) t = i;
for ( int i = dep[s] + dep[t] - 2 >> 1; i --; t = pre[t] );
init ( t ), DP ( t );
g = frepos += dep[t] + 1, frepos += dep[t] + 1;
LL ans = 0;
for ( int i = 1; i < n; ++ i ) ans += ori[i] * update ( down[i] );
printf ( "%lld\n", ans );
return 0;
}
Solution -「LOCAL」画画图的更多相关文章
- Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\) OurOJ. 给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...
- Solution -「LOCAL」大括号树
\(\mathcal{Description}\) OurTeam & OurOJ. 给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...
- Solution -「LOCAL」过河
\(\mathcal{Description}\) 一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...
- Solution -「LOCAL」Drainage System
\(\mathcal{Description}\) 合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...
- Solution -「LOCAL」Burning Flowers
灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\) 给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...
- Solution -「LOCAL」ZB 平衡树
\(\mathcal{Description}\) OurOJ. 维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...
- Solution -「LOCAL」舟游
\(\mathcal{Description}\) \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...
- Solution -「LOCAL」充电
\(\mathcal{Description}\) 给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...
- Solution -「LOCAL」「cov. 牛客多校 2020 第五场 C」Easy
\(\mathcal{Description}\) Link.(完全一致) 给定 \(n,m,k\),对于两个长度为 \(k\) 的满足 \(\left(\sum_{i=0}^ka_i=n\r ...
随机推荐
- Python常用功能函数系列总结(七)
本节目录 常用函数一:批量文件重命名 常用函数一:批量文件重命名 # -*- coding: utf-8 -*- """ DateTime : 2021/02/08 10 ...
- C# 开源一个基于 yarp 的 API 网关 Demo,支持绑定 Kubernetes Service
关于 Neting 刚开始的时候是打算使用微软官方的 Yarp 库,实现一个 API 网关,后面发现坑比较多,弄起来比较麻烦,就放弃了.目前写完了查看 Kubernetes Service 信息.创建 ...
- PAT 乙级 1004. 成绩排名 (20)(C语言描述)
读入n名学生的姓名.学号.成绩,分别输出成绩最高和成绩最低学生的姓名和学号. 输入格式:每个测试输入包含1个测试用例,格式为 第1行:正整数n 第2行:第1个学生的姓名 学号 成绩 第3行:第2个学生 ...
- Keil MDK STM32系列(五) 使用STM32CubeMX创建项目基础结构
Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...
- 干掉 Postman?测试接口直接生成API文档,ApiPost真香!
实不相瞒我的收藏夹里躺着很多优质的开发工具,我有个爱好平时遇到感兴趣的开发工具都会记录下来,然后有时间在慢慢研究.前几天刚给同事分享一款非常好用的API文档工具,真的被惊艳到了,粉丝朋友们也感受一下吧 ...
- 【Java】Eclipse常用快捷键
Eclipse常用快捷键 * 1.补全代码的声明:alt + / * 2.快速修复: ctrl + 1 * 3.批量导包:ctrl + shift + o * 4.使用单行注释:ctrl + / * ...
- Web开发之request
request常用方法 //常用方法 //得到的是:协议+服务器地址+端口号+工程名称+资源地址+参数 String url = request.getRequestURL(); //得到的是:工程名 ...
- Solon Web 开发,二、开发知识准备
Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...
- Docker环境安装,基本命令集合
一.docker安装 1).卸载旧的安装包 centos7默认安装的docker版本是1.13.1,卸载它,安装新的版本. root用户下,一次把这坨命令复制进去 yum remove docker ...
- 实习之bii--配置esxi重启时,虚拟机也跟随重启
由于初创环境不稳定又是服务器会重启,而内部安装的多部虚拟机并不默认跟随启动,需要设置,方法如下: 1.在本地通过vsphere client 登录到esxi的服务器上,然后点击配置找到虚拟机启动/关机 ...