\(\mathcal{Description}\)

  Link.

  给定序列 \(\{a_n\}\),\(q\) 组询问,给定 \(a<b<c<d\),求 \(l\le[a,b],r\le[c,d]\) 的子序列 \([l,r]\) 的中位数最大值。若长度为偶数,中位数取中间两数较大的一个。强制在线。

  \(n\le2\times10^4\),\(q\le2.5\times10^4\)。

\(\mathcal{Solution}\)

crashed:众所周知,中位数是可以二分的。

  考虑单组询问,二分中位数 \(mid\),把序列中大于等于 \(mid\) 的值设为 \(1\),小于 \(mid\) 的值设为 \(0\),求出满足条件的 \([l,r]\) 的序列和的最大值。若最大值是非负数,表明 \(mid\) 可行,且还能增大;否则只能减少。

  多组询问,发现对于每个 \(mid\),序列的长相都不尽相同。但序列的变化是极其有限的——当 \(mid\) 递增,每个位置只会又 \(1\) 变为 \(0\) 一次。

  由此可以想到主席树。离散化之后,预处理 \(mid=1,2,\dots,n\) 时的序列,建成主席树。树上维护区间和,区间最大前缀,区间最大后缀。处理询问时仍二分 \(mid\),利用以 \(mid\) 为根的这棵权值线段树的信息,求出区间最大和。显然最大和为 \([a,b)\text{最大后缀}+[b,c]\text{之和}+(c,d]\text{最大前缀}\),判断正负情况即可。由于二分时答案会尽量靠右,而最大的答案一定恰好是序列中的某个值,所以不必担心答案不在序列中的情况。

  复杂度 \(\mathcal O(n\log^2n)\)。

\(\mathcal{Code}\)

#include <cstdio>
#include <vector>
#include <algorithm> typedef std::pair<int, int> pii; const int MAXN = 20000;
int n, a[MAXN + 5], tval[MAXN + 5], root[MAXN + 5];
std::vector<int> apr[MAXN + 5]; inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} inline int max_ ( const int a, const int b ) { return a < b ? b : a; } struct PersistentSegmentTree {
static const int MAXND = MAXN * 40;
int cntnd, ch[MAXND + 5][2], sum[MAXND + 5], lmx[MAXND + 5], rmx[MAXND + 5]; inline void pushup ( const int rt ) {
sum[rt] = sum[ch[rt][0]] + sum[ch[rt][1]];
lmx[rt] = max_ ( lmx[ch[rt][0]], sum[ch[rt][0]] + lmx[ch[rt][1]] );
rmx[rt] = max_ ( rmx[ch[rt][1]], sum[ch[rt][1]] + rmx[ch[rt][0]] );
} inline void build ( int& rt, const int l, const int r ) {
rt = ++ cntnd;
if ( l == r ) return sum[rt] = lmx[rt] = rmx[rt] = 1, void ();
int mid = l + r >> 1;
build ( ch[rt][0], l, mid ), build ( ch[rt][1], mid + 1, r );
pushup ( rt );
} inline void update ( int& rt, const int l, const int r, const int x ) {
int old = rt; rt = ++ cntnd;
ch[rt][0] = ch[old][0], ch[rt][1] = ch[old][1];
sum[rt] = sum[old], lmx[rt] = lmx[old], rmx[rt] = rmx[old];
if ( l == r ) return sum[rt] = -1, lmx[rt] = rmx[rt] = 0, void ();
int mid = l + r >> 1;
if ( x <= mid ) update ( ch[rt][0], l, mid, x );
else update ( ch[rt][1], mid + 1, r, x );
pushup ( rt );
} inline int qrySum ( const int rt, const int l, const int r, const int ql, const int qr ) {
if ( ql <= l && r <= qr ) return sum[rt];
int mid = l + r >> 1, ret = 0;
if ( ql <= mid ) ret += qrySum ( ch[rt][0], l, mid, ql, qr );
if ( mid < qr ) ret += qrySum ( ch[rt][1], mid + 1, r, ql, qr );
return ret;
} inline pii qryLmx ( const int rt, const int l, const int r, const int ql, const int qr ) {
if ( ql <= l && r <= qr ) return { lmx[rt], sum[rt] };
int mid = l + r >> 1, ret = 0, s = 0; pii tmp;
if ( ql <= mid ) {
tmp = qryLmx ( ch[rt][0], l, mid, ql, qr );
ret = tmp.first, s = tmp.second;
}
if ( mid < qr ) {
tmp = qryLmx ( ch[rt][1], mid + 1, r, ql, qr );
ret = max_ ( ret, s + tmp.first ), s += tmp.second;
}
return { ret, s };
} inline pii qryRmx ( const int rt, const int l, const int r, const int ql, const int qr ) {
if ( ql <= l && r <= qr ) return { rmx[rt], sum[rt] };
int mid = l + r >> 1, ret = 0, s = 0; pii tmp;
if ( mid < qr ) {
tmp = qryRmx ( ch[rt][1], mid + 1, r, ql, qr );
ret = tmp.first, s = tmp.second;
}
if ( ql <= mid ) {
tmp = qryRmx ( ch[rt][0], l, mid, ql, qr );
ret = max_ ( ret, s + tmp.first ), s += tmp.second;
}
return { ret, s };
}
} pst; int main () {
n = rint ();
for ( int i = 1; i <= n; ++ i ) a[i] = tval[i] = rint ();
std::sort ( tval + 1, tval + n + 1 );
int lim = std::unique ( tval + 1, tval + n + 1 ) - tval - 1;
for ( int i = 1; i <= n; ++ i ) {
a[i] = std::lower_bound ( tval + 1, tval + lim + 1, a[i] ) - tval;
apr[a[i]].push_back ( i );
}
pst.build ( root[1], 1, n ); // 注意这里n的意义成为了序列长度,不要与lim搞混。
for ( int i = 2; i <= lim; ++ i ) {
root[i] = root[i - 1];
for ( int p: apr[i - 1] ) pst.update ( root[i], 1, n, p );
}
for ( int q = rint (), ans = 0, tmp[4]; q --; ) {
for ( int i = 0; i < 4; ++ i ) tmp[i] = ( rint () + ans ) % n + 1;
std::sort ( tmp, tmp + 4 );
int l = 1, r = lim;
while ( l <= r ) {
int mid = l + r >> 1;
int cnt = pst.qrySum ( root[mid], 1, n, tmp[1], tmp[2] )
+ pst.qryLmx ( root[mid], 1, n, tmp[2] + 1, tmp[3] ).first
+ pst.qryRmx ( root[mid], 1, n, tmp[0], tmp[1] - 1 ).first;
if ( cnt >= 0 ) l = ( ans = mid ) + 1;
else r = mid - 1;
}
printf ( "%d\n", ans = tval[ans] );
}
return 0;
}

Solution -「国家集训队」「洛谷 P2839」Middle的更多相关文章

  1. P4827「国家集训队」 Crash 的文明世界

    「国家集训队」 Crash 的文明世界 提供一种不需要脑子的方法. 其实是看洛谷讨论版看出来的( (但是全网也就这一篇这个方法的题解了) 首先这是一个关于树上路径的问题,我们可以无脑上点分治. 考虑当 ...

  2. 「国家集训队」middle

    「国家集训队」middle 传送门 按照中位数题的套路,二分答案 \(mid\),序列中 \(\ge mid\) 记为 \(1\),\(< mid\) 的记为 \(-1\) 然后只要存在一个区间 ...

  3. 「国家集训队」小Z的袜子

    「国家集训队」小Z的袜子 传送门 莫队板子题. 注意计算答案的时候,由于分子分母都要除以2,所以可以直接约掉,这样在开桶算的时候也方便一些. 参考代码: #include <algorithm& ...

  4. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  5. 「洛谷1903」「BZOJ2120」「国家集训队」数颜色【带修莫队,树套树】

    题目链接 [BZOJ传送门] [洛谷传送门] 题目大意 单点修改,区间查询有多少种数字. 解法1--树套树 可以直接暴力树套树,我比较懒,不想写. 稍微口胡一下,可以直接来一个树状数组套主席树,也就是 ...

  6. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  7. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  8. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  9. Solution -「APIO 2016」「洛谷 P3643」划艇

    \(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...

随机推荐

  1. Java在linux环境下和windows环境下日期字符串显示不同

    图片如果损坏,点击链接: https://www.toutiao.com/i6511565147322974724/ 出现的现象: 在Java中我想要将当前的时间格式化为需要的字符串,然后存放到数据库 ...

  2. 【洛谷】P1067 多项式输出

    原题链接:P1067 多项式输出 题目分析:学长推荐的OJ网站 --洛谷,发现挺好用的还可以下载提交出错的数据. 废话就不多说了,这道题属于基础题.提交出错主要是因为一些小细节不到位,这里就不一一赘述 ...

  3. 论文解读DEC《Unsupervised Deep Embedding for Clustering Analysis》

    Junyuan Xie, Ross B. Girshick, Ali Farhadi2015, ICML1243 Citations, 45 ReferencesCode:DownloadPaper: ...

  4. leetcode 24. 两两交换链表中的节点 及 25. K 个一组翻转链表

    24. 两两交换链表中的节点 问题描述 给定一个链表,两两交换其中相邻的节点,并返回交换后的链表. 你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换. 示例: 给定 1->2-> ...

  5. HashMap的实现原理(看这篇就够了)

    一线资深java工程师明确了需要精通集合容器,尤其是今天我谈到的HashMap. HashMap在Java集合的重要性不亚于Volatile在并发编程的重要性(可见性与有序性). 我会重点讲解以下9点 ...

  6. 带你学习Flood Fill算法与最短路模型

    一.Flood Fill(连通块问题) 0.简介 Flood Fill(洪水覆盖) 可以在线性的时间复杂内,找到某个点所在的连通块! 注:基于宽搜的思想,深搜也可以做但可能会爆栈 flood fill ...

  7. Python 安装MySQL 错误处理

    正常情况下如果使用python 连接数据库需要安装 python-MySQL 类库 #pip install python-MySQL 等待安装完成即可 使用时 import MySQLdb ==== ...

  8. vivo数据库与存储平台的建设和探索

    本文根据Xiao Bo老师在"2021 vivo开发者大会"现场演讲内容整理而成.公众号回复[2021VDC]获取互联网技术分会场议题相关资料. 一.数据库与存储平台建设背景 以史 ...

  9. python input函数

    函数 input() 让程序暂停运行,等待用户输入值,之后再把值赋给变量,输出.

  10. linux可用内存判断

    free是完全没有占用的空闲内存,Available 减 free是操作系统为了优化运行速度拿来调用的内存, 程序需要的话操作系统会进行释放.所以一般看Available即可. free+buffer ...