\(\mathcal{Description}\)

  Link.

  给定序列 \(\{a_n\}\),\(q\) 组询问,给定 \(a<b<c<d\),求 \(l\le[a,b],r\le[c,d]\) 的子序列 \([l,r]\) 的中位数最大值。若长度为偶数,中位数取中间两数较大的一个。强制在线。

  \(n\le2\times10^4\),\(q\le2.5\times10^4\)。

\(\mathcal{Solution}\)

crashed:众所周知,中位数是可以二分的。

  考虑单组询问,二分中位数 \(mid\),把序列中大于等于 \(mid\) 的值设为 \(1\),小于 \(mid\) 的值设为 \(0\),求出满足条件的 \([l,r]\) 的序列和的最大值。若最大值是非负数,表明 \(mid\) 可行,且还能增大;否则只能减少。

  多组询问,发现对于每个 \(mid\),序列的长相都不尽相同。但序列的变化是极其有限的——当 \(mid\) 递增,每个位置只会又 \(1\) 变为 \(0\) 一次。

  由此可以想到主席树。离散化之后,预处理 \(mid=1,2,\dots,n\) 时的序列,建成主席树。树上维护区间和,区间最大前缀,区间最大后缀。处理询问时仍二分 \(mid\),利用以 \(mid\) 为根的这棵权值线段树的信息,求出区间最大和。显然最大和为 \([a,b)\text{最大后缀}+[b,c]\text{之和}+(c,d]\text{最大前缀}\),判断正负情况即可。由于二分时答案会尽量靠右,而最大的答案一定恰好是序列中的某个值,所以不必担心答案不在序列中的情况。

  复杂度 \(\mathcal O(n\log^2n)\)。

\(\mathcal{Code}\)

#include <cstdio>
#include <vector>
#include <algorithm> typedef std::pair<int, int> pii; const int MAXN = 20000;
int n, a[MAXN + 5], tval[MAXN + 5], root[MAXN + 5];
std::vector<int> apr[MAXN + 5]; inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} inline int max_ ( const int a, const int b ) { return a < b ? b : a; } struct PersistentSegmentTree {
static const int MAXND = MAXN * 40;
int cntnd, ch[MAXND + 5][2], sum[MAXND + 5], lmx[MAXND + 5], rmx[MAXND + 5]; inline void pushup ( const int rt ) {
sum[rt] = sum[ch[rt][0]] + sum[ch[rt][1]];
lmx[rt] = max_ ( lmx[ch[rt][0]], sum[ch[rt][0]] + lmx[ch[rt][1]] );
rmx[rt] = max_ ( rmx[ch[rt][1]], sum[ch[rt][1]] + rmx[ch[rt][0]] );
} inline void build ( int& rt, const int l, const int r ) {
rt = ++ cntnd;
if ( l == r ) return sum[rt] = lmx[rt] = rmx[rt] = 1, void ();
int mid = l + r >> 1;
build ( ch[rt][0], l, mid ), build ( ch[rt][1], mid + 1, r );
pushup ( rt );
} inline void update ( int& rt, const int l, const int r, const int x ) {
int old = rt; rt = ++ cntnd;
ch[rt][0] = ch[old][0], ch[rt][1] = ch[old][1];
sum[rt] = sum[old], lmx[rt] = lmx[old], rmx[rt] = rmx[old];
if ( l == r ) return sum[rt] = -1, lmx[rt] = rmx[rt] = 0, void ();
int mid = l + r >> 1;
if ( x <= mid ) update ( ch[rt][0], l, mid, x );
else update ( ch[rt][1], mid + 1, r, x );
pushup ( rt );
} inline int qrySum ( const int rt, const int l, const int r, const int ql, const int qr ) {
if ( ql <= l && r <= qr ) return sum[rt];
int mid = l + r >> 1, ret = 0;
if ( ql <= mid ) ret += qrySum ( ch[rt][0], l, mid, ql, qr );
if ( mid < qr ) ret += qrySum ( ch[rt][1], mid + 1, r, ql, qr );
return ret;
} inline pii qryLmx ( const int rt, const int l, const int r, const int ql, const int qr ) {
if ( ql <= l && r <= qr ) return { lmx[rt], sum[rt] };
int mid = l + r >> 1, ret = 0, s = 0; pii tmp;
if ( ql <= mid ) {
tmp = qryLmx ( ch[rt][0], l, mid, ql, qr );
ret = tmp.first, s = tmp.second;
}
if ( mid < qr ) {
tmp = qryLmx ( ch[rt][1], mid + 1, r, ql, qr );
ret = max_ ( ret, s + tmp.first ), s += tmp.second;
}
return { ret, s };
} inline pii qryRmx ( const int rt, const int l, const int r, const int ql, const int qr ) {
if ( ql <= l && r <= qr ) return { rmx[rt], sum[rt] };
int mid = l + r >> 1, ret = 0, s = 0; pii tmp;
if ( mid < qr ) {
tmp = qryRmx ( ch[rt][1], mid + 1, r, ql, qr );
ret = tmp.first, s = tmp.second;
}
if ( ql <= mid ) {
tmp = qryRmx ( ch[rt][0], l, mid, ql, qr );
ret = max_ ( ret, s + tmp.first ), s += tmp.second;
}
return { ret, s };
}
} pst; int main () {
n = rint ();
for ( int i = 1; i <= n; ++ i ) a[i] = tval[i] = rint ();
std::sort ( tval + 1, tval + n + 1 );
int lim = std::unique ( tval + 1, tval + n + 1 ) - tval - 1;
for ( int i = 1; i <= n; ++ i ) {
a[i] = std::lower_bound ( tval + 1, tval + lim + 1, a[i] ) - tval;
apr[a[i]].push_back ( i );
}
pst.build ( root[1], 1, n ); // 注意这里n的意义成为了序列长度,不要与lim搞混。
for ( int i = 2; i <= lim; ++ i ) {
root[i] = root[i - 1];
for ( int p: apr[i - 1] ) pst.update ( root[i], 1, n, p );
}
for ( int q = rint (), ans = 0, tmp[4]; q --; ) {
for ( int i = 0; i < 4; ++ i ) tmp[i] = ( rint () + ans ) % n + 1;
std::sort ( tmp, tmp + 4 );
int l = 1, r = lim;
while ( l <= r ) {
int mid = l + r >> 1;
int cnt = pst.qrySum ( root[mid], 1, n, tmp[1], tmp[2] )
+ pst.qryLmx ( root[mid], 1, n, tmp[2] + 1, tmp[3] ).first
+ pst.qryRmx ( root[mid], 1, n, tmp[0], tmp[1] - 1 ).first;
if ( cnt >= 0 ) l = ( ans = mid ) + 1;
else r = mid - 1;
}
printf ( "%d\n", ans = tval[ans] );
}
return 0;
}

Solution -「国家集训队」「洛谷 P2839」Middle的更多相关文章

  1. P4827「国家集训队」 Crash 的文明世界

    「国家集训队」 Crash 的文明世界 提供一种不需要脑子的方法. 其实是看洛谷讨论版看出来的( (但是全网也就这一篇这个方法的题解了) 首先这是一个关于树上路径的问题,我们可以无脑上点分治. 考虑当 ...

  2. 「国家集训队」middle

    「国家集训队」middle 传送门 按照中位数题的套路,二分答案 \(mid\),序列中 \(\ge mid\) 记为 \(1\),\(< mid\) 的记为 \(-1\) 然后只要存在一个区间 ...

  3. 「国家集训队」小Z的袜子

    「国家集训队」小Z的袜子 传送门 莫队板子题. 注意计算答案的时候,由于分子分母都要除以2,所以可以直接约掉,这样在开桶算的时候也方便一些. 参考代码: #include <algorithm& ...

  4. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  5. 「洛谷1903」「BZOJ2120」「国家集训队」数颜色【带修莫队,树套树】

    题目链接 [BZOJ传送门] [洛谷传送门] 题目大意 单点修改,区间查询有多少种数字. 解法1--树套树 可以直接暴力树套树,我比较懒,不想写. 稍微口胡一下,可以直接来一个树状数组套主席树,也就是 ...

  6. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  7. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  8. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  9. Solution -「APIO 2016」「洛谷 P3643」划艇

    \(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...

随机推荐

  1. LC 二叉树的最大深度

    https://leetcode-cn.com/leetbook/read/top-interview-questions-easy/xnd69e/ Recursion /** * Definitio ...

  2. 灵雀云入选Gartner 2020中国ICT技术成熟度曲线报告,容器技术处于顶峰

    近日,全球权威咨询分析机构Gartner发布了"2020中国ICT技术成熟度曲线(Hype Cycle for ICT in China, 2020 )"报告,灵雀云作为国内容器和 ...

  3. Kube-OVN 1.2.0发布,携手社区成员打造高性能容器网络

    Kube-OVN 1.2.0 新版本如期而至,支持 Vlan 和 OVS-DPDK 两种类型的高性能网络接口.本次发布得益于社区的壮大,感谢Intel爱尔兰开发团队与锐捷网络开发团队持续积极参与Kub ...

  4. httprunner3.x全网最详细教程

    一.所需环境 wiindows10以上 python3.6以上 httprunner3.1.6(最新版本) pycharm社区版 二.安装httprunner 1.卸载旧版本 卸载之前版本的命令为:p ...

  5. POJ 1664 放苹果 (递推思想)

    原题链接:http://poj.org/problem?id=1664 思路:苹果m个,盘子n个.假设 f ( m , n ) 代表 m 个苹果,n个盘子有 f ( m , n ) 种放法. 根据 n ...

  6. Json Schema 是什么?

    本文地址:Json Schema 是什么? 简单说,Json Schema 其实就是一个标准的 Json 串,它以一个 Json 串来描述我们需要的数据规范,并且支持注释以及验证 Json 文档,即我 ...

  7. 【Android】安卓四大组件之Activity(二)

    [Android]安卓四大组件之Activity(二) 前言 在这篇文章之前,我已经写过了一篇有关Activity的内容,是关于activity之间的页面跳转和数据传递,而这篇文章着重强调的是Acti ...

  8. Javascript中数组的定义和常见使用方法

    一.定义数组 1.定义数组 var arry=[1,2,'小名',false] //var 数组名=[值1,值2,...] 2.设置数组长度 arry.length=10 //数组长度设置为10 二. ...

  9. manjaro20配置matebook fn驱动

    安装fn驱动 https://github.com/aymanbagabas/Huawei-WMI Latest release中下载并安装 matebook-applet_2.4.8_amd64.d ...

  10. 返回值List是JsonArray

    MyController中: index.jsp中