Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\)
给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{and},\operatorname{or},\operatorname{xor}\}\),对于 \(i\in[2,n]\),求出 \(\max_{j\in[1,i)}\{a_i\operatorname{op} a_j\}\) 以及 \(|\arg\max_{j\in[1,i)}\{a_i\operatorname{op} a_j\}|\)。
\(n\le10^5\),\(a_i<2^{16}\)。
\(\mathcal{Solution}\)
也许算是 Meet in Middle?从左到右在线更新可用的 \(a_j\) 信息并求出对于当前 \(i\) 的答案,维护一个 \(f(u,v)\),表示选取的 \(a_j\) 的高八位是 \(u\) 且 \(a_i\) 的低八位是 \(v\) 时,低八位能得到的最大值以及方案数。那么更新时,用当前 \(a_j\) 的低八位更新所有 \(f(u,i)\);查询时枚举高八位选择的值 \(i\),并用 \(f(i,v)\) 更新答案。最终复杂度为 \(\mathcal O(n\sqrt A)\)。
确实是比较巧妙的复杂度平衡,也是一个实用的 trick√
\(\mathcal{Code}\)
/*~Rainybunny~*/
#include <bits/stdc++.h>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef std::pair<int, int> PII;
#define fi first
#define se second
const int MAXN = 1e5, MAXSV = 1 << 8;
int n, a[MAXN + 5];
char op[5];
PII f[MAXSV][MAXSV];
inline void update( const int x, const auto& opt ) {
int h = x >> 8, l = x ^ h << 8;
rep ( i, 0, MAXSV - 1 ) {
int v = opt( i, l );
if ( f[h][i].fi < v ) f[h][i] = { v, 1 };
else if ( f[h][i].fi == v ) ++f[h][i].se;
}
}
inline PII query( const int x, const auto& opt ) {
int l = x & ( ( 1 << 8 ) - 1 );
PII ret( 0, 0 );
rep ( h, 0, MAXSV - 1 ) if ( f[h][l].se ) {
int cur = opt( h, x >> 8 ) << 8 | f[h][l].fi;
if ( ret.fi < cur ) ret = { cur, f[h][l].se };
else if ( ret.fi == cur ) ret.se += f[h][l].se;
}
return ret;
}
inline void solve( const auto& opt ) {
update( a[1], opt );
rep ( i, 2, n ) {
PII ans( query( a[i], opt ) );
printf( "%d %d\n", ans.fi, ans.se ), update( a[i], opt );
}
}
int main() {
scanf( "%d %s", &n, op );
rep ( i, 1, n ) scanf( "%d", &a[i] );
if ( op[0] == 'x' ) {
solve( []( const int u, const int v ) { return u ^ v; } );
} else if ( op[0] == 'a' ) {
solve( []( const int u, const int v ) { return u & v; } );
} else {
solve( []( const int u, const int v ) { return u | v; } );
}
return 0;
}
Solution -「LOCAL」二进制的世界的更多相关文章
- Solution -「LOCAL」大括号树
\(\mathcal{Description}\) OurTeam & OurOJ. 给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...
- Solution -「LOCAL」过河
\(\mathcal{Description}\) 一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...
- Solution -「LOCAL」Drainage System
\(\mathcal{Description}\) 合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...
- Solution -「LOCAL」Burning Flowers
灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\) 给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...
- Solution -「LOCAL」画画图
\(\mathcal{Description}\) OurTeam. 给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...
- Solution -「LOCAL」ZB 平衡树
\(\mathcal{Description}\) OurOJ. 维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作: 在某个位置插入一个二元组: 翻 ...
- Solution -「LOCAL」舟游
\(\mathcal{Description}\) \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...
- Solution -「LOCAL」充电
\(\mathcal{Description}\) 给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...
- Solution -「LOCAL」「cov. 牛客多校 2020 第五场 C」Easy
\(\mathcal{Description}\) Link.(完全一致) 给定 \(n,m,k\),对于两个长度为 \(k\) 的满足 \(\left(\sum_{i=0}^ka_i=n\r ...
随机推荐
- 金融云原生漫谈(三)|银行云原生基础设施构建:裸金属VS虚拟机
在金融行业数字化转型的驱动下,国有银行.股份制银行和各级商业银行也纷纷步入容器化的进程. 如果以容器云上生产为目标,那么整个容器云平台的设计.建设和优化对于银行来说是一个巨大的挑战.如何更好地利用 ...
- Cplex用法
Cplex用法 1.将问题转化为LP问题: cplex -c read mps/nw460.mps change problem type lp opt 2.将问题转化为LP问题并输出问题: cple ...
- 【记录一个问题】cv::cuda::BufferPool发生assert错误
cv::cuda::setBufferPoolUsage(true); const int width = 512; const int height = 848; const int channel ...
- 【记录一个问题】android opencl c++: 使用event.SetCallBack()方法后,在回调函数中要再使用event.wait()才能得到profile信息
如题:希望执行完成后得到各个阶段的执行时间,但是通过回调发现start, end, submit, queued等时间都是0 因此要在回调函数中再使用一次event.wait(),然后才能获得prof ...
- 话说C#程序员人手一个ORM
话说C#程序员人手一个ORM,确实没有必要再写ORM了,不过我的ORM并不是新的,是从DBHelper演化过来的,算是DBHelper魔改版. 目前流行的ORM有EF.Dapper.SqlSugar. ...
- IoC容器-Bean管理XML方式(p名称空间注入)
5,p名称空间注入(简化xml配置) (1)使用p名称空间注入,可以简化基于xml配置方式 (了解实际用不多) 第一步 添加 p 名称空间在配置文件中 第二步 进行属性注入,在bean标签里面进行 ...
- Java安全之C3P0利用与分析
Java安全之C3P0利用与分析 目录 Java安全之C3P0利用与分析 写在前面 C3P0 Gadget http base C3P0.getObject() 序列化 反序列化 Class.forN ...
- rust实战系列 - 使用Iterator 迭代器实现斐波那契数列(Fibonacci )
为什么是斐波那契数列 斐波那契数列十分适合用来实战rust的迭代器,算法也很简单,一目了然.这个例子可以用来学习Iterator的使用,十分适合刚学习了rust的迭代器章节后用来练练手. 代码实战 d ...
- PyTorch 介绍 | BUILD THE NEURAL NETWORK
神经网络由对数据进行操作的layers/modules组成.torch.nn 命名空间提供了所有你需要的构建块,用于构建你自己的神经网络.PyTorch的每一个module都继承自nn.Module. ...
- Mysql自序整理集
1.事务 mysql事务是用于处理操作量大.复杂性高的数据 1. 事务特性 原子性:保证每个事务所有操作要么全部完成或全部不完成,不可能停滞在中间环节:如事务在执行过程中出现错误,则会回滚到事务开始之 ...