CVPR2019论文看点:自学习Anchor原理

原论文链接:https://arxiv.org/pdf/1901.03278.pdf

CVPR2019的一篇对anchor进行优化的论文,主要将原来需要预先定义的anchor改成直接end2end学习anchor位置和size。首先anchor的定义通常为(x, y, w, h) (x, y为中心点),formulate一下:

本文所提的guided anchoring利用两个branch分别预测anchor的位置和w、h:

guided anchoring的主要内容有如下几点:

Anchor
Location Prediction


逻辑很简单,利用一个1x1的conv将输入的feature map转换成 W x H x 1的heatmap,通过卡阈值t来得到anchor可能出现的位置,在训练的时候可以通过gt的框来生成heatmap的groudtruth,negtive、positive、ignore的pixel定义论文中有比较详细的介绍。

Anchor Shape Prediction

这一部分逻辑和上一部分一样,也是通过一个1x1的conv将输入的feature map转换成W x H x 2的heatmap,只是考虑到如果直接回归w和h范围太广会比较不稳定,作者做了一定的转化将预测值约束到[-1,1],实际使用的时候再映射回去,s为feature map的stride,sigma为8:

需要注意的是和传统的anchor设置不一样的是,guider anchoring在某一个pixel下只会设置一个anchor。

这一部分的训练其实会是比较需要特别注意的地方,论文中使用来IoU
loss来监督,但是这样存在一个问题,因为这个分支本身是预测w,h的,所以IoU Loss的计算无法知道match的具体gt,作者提出的方法是sample 9组常见的w、h,这样就可以利用这9组w、h构建9个不同的anchor去和gt匹配,IoU最大的匹配gt就是当前需要去计算IoU Loss的gt,然后直接用heatmap的w、h和这个gt计算IoU Loss即可:

Anchor-Guided
Feature Adaptation


这一个模块主要是针对feature有可能和anchor不一致而提出的,因为对于原先预定义的anchor而言,每一个pixel对应位置的anchor其实都是一样的,所以也就无所谓feature的异同,但是guided
anchoring逻辑下不同的pixel有可能anchor的size差别很大,仍然像之前那样直接出cls和reg很显然是不合适的,所以作者就提出了adaptation的模块,利用deformable
conv来处理不同形状的anchor对应的feature。

论文的最后作者也提了一下因为GA-RPN可以得到很多高质量的porposal,通过提高阈值可以进一步优化检测的效果。

实验结果:

高质量 proposal 的正确打开方式

故事到这里其实也可以结束了,但是我们遇到了和之前一些改进
proposal 的
paper 里相同的问题,那就是
proposal 质量提升很多(如下图),但是在
detector 上性能提升比较有限。在不同的检测模型上,使用
Guided Anchoring 可以提升 1
个点左右。明明有很好的 proposal,但是 mAP 却没有涨很多,让人十分难受。

经过一番探究,我们发现了以下两点:1.
减少 proposal 数量,2.
增大训练时正样本的 IoU 阈值(这个更重要)。既然在 top300 里面已经有了很多高 IoU 的 proposal,那么何必用
1000 个框来训练和测试,既然
proposal 们都这么优秀,那么让
IoU 标准严格一些也未尝不可。

这个正确的打开方式基本是 独立调出来的,让
performance 一下好看了很多。通过这两个改进,在
Faster R-CNN 上的涨点瞬间提升到了
2.7 个点(没有加任何
trick),其他方法上也有大幅提升。

生成 anchor

在得到
anchor 位置和中心点的预测之后,我们便可以生成
anchor 了,如下图所示。这时的
anchor 是稀疏而且每个位置不一样的。采用生成的
anchor 取代
sliding window,AR
(Average Recall) 已经可以超过普通
RPN 4 个点了,代价仅仅是增加两个
1x1 conv。

实验结结果

CVPR2019论文看点:自学习Anchor原理的更多相关文章

  1. CVPR2019目标检测论文看点:并域上的广义交

    CVPR2019目标检测论文看点:并域上的广义交 Generalized Intersection over Union Generalized Intersection over Union: A ...

  2. CVPR2019论文观察:感知边缘检测的双向级联网络

    CVPR2019论文观察:感知边缘检测的双向级联网络 BDCN:Bi-Directional Cascade Network for Perceptual Edge Detection 摘要 探索多尺 ...

  3. 白*衡(Color Constancy,无监督AWB):CVPR2019论文解析

    白*衡(Color Constancy,无监督AWB):CVPR2019论文解析 Quasi-Unsupervised Color Constancy 论文链接: http://openaccess. ...

  4. 将视频插入视频:CVPR2019论文解析

    将视频插入视频:CVPR2019论文解析 Inserting Videos into Videos 论文链接: http://openaccess.thecvf.com/content_CVPR_20 ...

  5. 全景分割:CVPR2019论文解析

    全景分割:CVPR2019论文解析 Panoptic Segmentation 论文链接: http://openaccess.thecvf.com/content_CVPR_2019/papers/ ...

  6. 跟vczh看实例学编译原理——三:Tinymoe与无歧义语法分析

    文章中引用的代码均来自https://github.com/vczh/tinymoe.   看了前面的三篇文章,大家应该基本对Tinymoe的代码有一个初步的感觉了.在正确分析"print ...

  7. 跟vczh看实例学编译原理——一:Tinymoe的设计哲学

    自从<序>胡扯了快一个月之后,终于迎来了正片.之所以系列文章叫<看实例学编译原理>,是因为整个系列会通过带大家一步一步实现Tinymoe的过程,来介绍编译原理的一些知识点. 但 ...

  8. 跟vczh看实例学编译原理——零:序言

    在<如何设计一门语言>里面,我讲了一些语言方面的东西,还有痛快的喷了一些XX粉什么的.不过单纯讲这个也是很无聊的,所以我开了这个<跟vczh看实例学编译原理>系列,意在科普一些 ...

  9. CVPR2018论文看点:基于度量学习分类与少镜头目标检测

    CVPR2018论文看点:基于度量学习分类与少镜头目标检测 简介 本文链接地址:https://arxiv.org/pdf/1806.04728.pdf 距离度量学习(DML)已成功地应用于目标分类, ...

随机推荐

  1. C++处理char*,char[],string三种类型间的转换

    前言 在C和C++中,有一个相当重要的部分,就是字符串的编程描述.在学C的时候,很多人习惯了char[],char*表示法,直到遇见了C++后,出现了第三者:string.这时候,很多初学者就会在这三 ...

  2. Day003 变量、常量、作用域

    变量 变量:就是可以变化的量 Java是一种强类型语言,每个变量都必须声明其类型. Java变量是程序中最基本的存储单元,其要素包括变量名,变量类型和作用域 变量的定义 数据类型 变量名 = 值:可以 ...

  3. lombok,Invalid byte tag in constant pool: 19

    今天偶到一个奇怪的问题: 三台生产服务器部署同样的代码,同样的tomcat ,jdk等环境. 其中有一台服务器启动时报lombok-1.18.6.jar!   Invalid byte tag in ...

  4. C#事件总线

    目录 简介 实现事件总线 定义事件基类 定义事件参数基类 定义EventBus 使用事件总线 事件及事件参数 定义发布者 定义订阅者 实际使用 总结 参考资料 简介 事件总线是对发布-订阅模式的一种实 ...

  5. Windows 程序自动更新方案: Squirrel.Windows

    Windows 程序自动更新方案: Squirrel.Windows 1. Squirrel Squirrel 是一组工具和适用于.Net的库,用于管理 Desktop Windows 应用程序的安装 ...

  6. 实施CRM系统后 企业客户服务的改变

    通过实施CRM客户管理系统,企业的竞争力和盈利能力得到大幅提高.在这个过程中,客户服务不仅能够持续的满足客户的需求,还能够促进客户与企业建立长期的互惠互利的良好客户关系,这也为企业赢得了更多的商机和利 ...

  7. Linux(深度)系统安装富士施乐(网络)打印机

    一般来讲,linux系统识别打印机没有问题,重点难点在于后面设置.此文特别感谢:河北石龙的陈一繁销售代表.P288dw施乐官网并未提供Linux的驱动并在安装过程中遇到很多问题,其不厌其烦的为我联系厂 ...

  8. [bug] org.yaml.snakeyaml.error.YAMLException: java.nio.charset.MalformedInputException: Input length = 2

    原因 SpringBoot启动加载yml配置文件出现编码格式错误 参考 https://www.pianshen.com/article/2431144034/

  9. [c++] 声明

    注意事项 变量定义时就会赋初值(如int是0),所以定义包含声明,单纯声明不定义的话,要加extern 同一个文件中,函数使用(调用)前必须定义(有{ }为定义),否则会报错:若先使用再定义,或定义和 ...

  10. CentOS 7 vs. CentOS 8 版本差异大比拼

    CentOS 7 vs. CentOS 8 版本差異大比拼 2020-02-14 CentOS 最近剛好在撰寫課鋼,必須要以最新的 CentOS 8 版本為主,剛好來做一下 CentOS 7 和 Ce ...