将TVM集成到PyTorch
将TVM集成到PyTorch
随着TVM不断展示出对深度学习执行效率的改进,很明显PyTorch将从直接利用编译器堆栈中受益。PyTorch的主要宗旨是提供无缝且强大的集成,而这不会妨碍用户。PyTorch现在具有基于TVM的官方后端torch_tvm。
用法很简单:
import torch_tvm
torch_tvm.enable()
就是这样!然后,PyTorch将尝试在其JIT编译过程中,将所有可能的算子转换为已知的Relay算子。
背景
与许多其它ML框架不同,PyTorch公开了一个执行的编程接口。这种编程风格避免了图元编程,而专注于以Python方式直接控制n维数组(张量)。该框架最初非常适合模型的试验和开发,但不适用于自动性能优化或部署。为了利用优化的编译器技术,PyTorch最近引入了一些较大的改进来解决此问题。
PyTorch 1.0引入了PyTorch IR,PyTorch专用的中间表示形式,用于类似于Relay的模型。可以通过模型跟踪,将PyTorch程序转换为IR,该跟踪记录模型或Python的子集TorchScript的执行。新的TVM后端将PyTorch的IR降低到了Relay,能够透明地提高PyTorch的性能,无需用户参与。
整合与结果
为了支持Relay,PyTorch JIT添加了两个功能:自定义转换过程和自定义子图解释器。
当torch_tvm
启用时,可以转换到Relay PyTorch IR的子图Expr
,
旨意被标记为Relay 兼容。由于PyTorch IR并不总是包含形状信息,因此在调用之前,无法以有用的方式编译任何子图。
在用户调用期间,PyTorch JIT Runtime将确定输入形状信息,并使用新的Relay C ++构建系统,编译先前标记的子图。根据输入形状来缓存编译,以供后续运行。可以在README中找到更多详细信息。
torch_tvm
建立了一个连续的基准测试系统,该系统正在监视ResNet18在CPU上的性能。对于各种ResNet型号,TVM的性能都是默认PyTorch JIT后端的两倍以上。下图详细描述了在AWS c5n.4xlarge实例上,使用16个线程实现的每秒迭代次数(越大越好):
这些结果令人鼓舞,该项目将继续致力于在更多模型上提高CPU推理速度。
未来的工作
现在,PyTorch JIT进行了大量工作来查找其IR的纯功能子集,馈送到Relay。避免了将采样和控制流信息映射到Relay,这不是必需的。将更多的PyTorch IR映射到Relay,可能会取得性能上的胜利,这是该项目的目标。PyTorch IR在开发过程中正在迅速变化,因此必须谨慎进行。
将做更多的工作来确保PyTorch和TVM代码之间的切换是有效的。这包括统一线程模型,分配器以及减少与将输入复制到TVM相关的开销。
help文件
如果已经编写了PyTorch模型,最简单的入门方法就是使用torch.jit.trace
方法
import torch_tvm
from your_model import model, inputs
torch_tvm.enable(opt_level=3)
iters = 100
warmup = 10
# Ensure your model is in eval mode and also turn off gradients.
with torch.no_grad():
# Use tuned parameters for better performance.
with autotvm.apply_history_best("test/autotvm_tuning.log"):
# This is where all the compilation happens.
trace_tvm = torch.jit.trace(model, inputs)
# Warmup
for _ in range(warmup):
_ = trace_tvm(*inputs)
# Benchmark
start = time.time()
for _ in range(iters):
_ = trace_tvm(*inputs)
tvm_time = time.time() - start
print("Took {}s to run {} iters".format(tvm_time, iters))
注意,用于AVX2 LLVM编译的调整参数位于存储库test/
文件夹中。
如果直接使用Relay,可以通过(隐式)跟踪或TorchScript直接,从PyTorch函数中提取表达式:
def add(a, b, c):
return a + b + c
# via tracing
relay_graph = torch_tvm.to_relay(add, inputs)
@torch.jit.script
def mul(a, b, c):
return a * b * c
# via script
relay_graph = torch_tvm.to_relay(mul, inputs)
将TVM集成到PyTorch的更多相关文章
- 将TVM集成到PyTorch上
将TVM集成到PyTorch上 随着TVM不断展示出对深度学习执行效率的改进,很明显PyTorch将从直接利用编译器堆栈中受益.PyTorch的主要宗旨是提供无缝且强大的集成,而这不会妨碍用户.为此, ...
- 桥接PyTorch和TVM
桥接PyTorch和TVM 人工智能最引人入胜的一些应用是自然语言处理.像BERT或GPT-2之类的模型及其变体,可以获住足够多的文本信息. 这些模型属于称为Transformers的神经网络类体系结 ...
- 官宣,PyTorch 1.0 稳定版本现已推出
简评:快来一起快乐地学习吧. 随着 PyTorch 生态系统和社区继续为开发人员提供有趣的新项目和教育资源,今天(12 月 7日)在 NeurIPS 会议上发布了 PyTorch 1.0 稳定版.研究 ...
- Pytorch实现MNIST(附SGD、Adam、AdaBound不同优化器下的训练比较) adabound实现
学习工具最快的方法就是在使用的过程中学习,也就是在工作中(解决实际问题中)学习.文章结尾处附完整代码. 一.数据准备 在Pytorch中提供了MNIST的数据,因此我们只需要使用Pytorch提供 ...
- 英特尔与 Facebook 合作采用第三代英特尔® 至强® 可扩展处理器和支持 BFloat16 加速的英特尔® 深度学习加速技术,提高 PyTorch 性能
英特尔与 Facebook 曾联手合作,在多卡训练工作负载中验证了 BFloat16 (BF16) 的优势:在不修改训练超参数的情况下,BFloat16 与单精度 32 位浮点数 (FP32) 得到了 ...
- [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路
[源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 目录 [源码解析] PyTorch 分布式之弹性训练(1) --- 总体思路 0x00 摘要 0x01 痛点 0x02 难点 0 ...
- 解决编译caffe2遇到的坑
首先我们要从源码克隆caffe2的库: git clone --recursive https://github.com/caffe2/caffe2.git 执行下载过程会报这样的错: Cloning ...
- 腾讯 angel 3.0:高效处理模型
腾讯 angel 3.0:高效处理模型 紧跟华为宣布新的 AI 框架开源的消息,腾讯又带来了全新的全栈机器学习平台 angel3.0.新版本功能特性覆盖了机器学习的各个阶段,包括:特征工程.模型训练. ...
- [源码分析] Facebook如何训练超大模型---(1)
[源码分析] Facebook如何训练超大模型---(1) 目录 [源码分析] Facebook如何训练超大模型---(1) 0x00 摘要 0x01 简介 1.1 FAIR & FSDP 1 ...
随机推荐
- 老Python总结的字典相关知识
字典 Python中的字典(dict)也被称为映射(mapping)或者散列(hash),是支持Python底层实现的重要数据结构. 同时,也是应用最为广泛的数据结构,内部采用hash存储,存储方式为 ...
- TP5.1 遇见问题整理
1. 获取当前执行sql fetchSql(true) self::table('ecm_draw_address')->field('id')->where(array('store_i ...
- 【Java注解】@PostConstruct 注解相关
不多逼逼,直接看注解上面的文档, @PostConsturct PostConstruct注释用于需要执行的方法在依赖注入完成后执行任何初始化.这个方法必须在类投入服务之前调用. 这个所有支持依赖关系 ...
- jQuery数组($.grep,$.each,$.inArray,$.map)处理函数详解
1.jQuery.grep( array, function(elementOfArray, indexInArray) [, invert ] ) 描述: 查找满足过滤函数的数组元素.原始数组不受影 ...
- .NET之默认依赖注入
介绍 不要依赖于具体的实现,应该依赖于抽象,高层模块不应该依赖于底层模块,二者应该依赖于抽象.简单的说就是为了更好的解耦.而控制反转(Ioc)就是这样的原则的其中一个实现思路, 这个思路的其中一种实现 ...
- python-内置函数-compile,eval,exec
#将字符串,编译成python代码 compile()#执行,有返回值,执行表达式并获取结果 eval()#执行python代码,无返回值,接收:代码或者字符串 exec() s = "pr ...
- redis分布式锁-可重入锁
redis分布式锁-可重入锁 上篇redis实现的分布式锁,有一个问题,它不可重入. 所谓不可重入锁,即若当前线程执行某个方法已经获取了该锁,那么在方法中尝试再次获取锁时,就会获取不到被阻塞. 同一个 ...
- Java容器 | 基于源码分析Map集合体系
一.容器之Map集合 集合体系的源码中,Map中的HashMap的设计堪称最经典,涉及数据结构.编程思想.哈希计算等等,在日常开发中对于一些源码的思想进行参考借鉴还是很有必要的. 基础:元素增查删.容 ...
- 2Spring对象创建小结
Spring的对象创建 Spring学习笔记 周芋杉2021/5/15 原理:工厂设计模式,通过反射创建对象. Spring工厂分类 非web环境:ClassPathXmlApplicationCon ...
- centos7下cups + samba共打印服务
centos7下cups + samba共打印服务 2015年8月21日admin发表评论阅读评论 这个算是rhce课程的篇外篇,Samba除了提供文件共享外,也可以像windows下的共享一样提 ...