LuoguP7441 「EZEC-7」Erinnerung 题解
Content
给定 \(x,y,K\)。定义两个数列 \(c,e\),其中 \(c_i=\begin{cases}x\cdot i&x\cdot i\leqslant K\\-K&\text{otherwise}\end{cases}\),\(e_i=\begin{cases}y\cdot i&y\cdot i\leqslant K\\-K&\text{otherwise}\end{cases}\)。每次操作从两个数列中各选取一个数,满足两个数之和 \(\geqslant K\)。一个数选取了之后不能再重复取。问你一共能进行多少次操作。
数据范围:\(t\) 组数据,\(1\leqslant t\leqslant 10^5\),\(0\leqslant x,y\leqslant 10^{10}\),\(1\leqslant K\leqslant 10^{10}\)。
Solution
不难发现,如果 \(x,y\neq0\),那么答案必定是 \(\min\{\left\lfloor\dfrac Kx\right\rfloor,\left\lfloor\dfrac Ky\right\rfloor\}\)。
证明:
(1) \(y\geqslant x\),则对于 \((c_n,e_1)\) 这一对数(\(n\) 表示能够使 \(c_i\geqslant 0\) 成立的最大的 \(i\)),因为 \(c_n+x\geqslant K\),而 \(y\geqslant x\),所以必然有 \(c_n+e_1=c_n+y\geqslant K\)。后面的 \((c_{n-1},e_2),\dots\) 也显然成立。
(2)\(y\leqslant x\),则对于 \((c_1,e_m)\) 这两对 (\(m\) 含义类比于上面的 \(n\)),因为 \(e_m+y\geqslant K\),而 \(x\geqslant y\),所以必然有 \(c_1+e_m=e_m+x\geqslant K\)。后面的 \((c_2,e_{m-1}),\dots\) 也显然成立。
证明完之后我们再来看看 \(x,y\) 中至少有一个等于 \(0\) 时的情况:
(1)\(x,y\) 中有且仅有一个等于 \(0\)。则我们需要看是否有 \(\max\{x,y\}\mid K\),如果有的话,那我们可以拿一个 \(K\) 和 \(0\) 组成一对,这对数的和恰好等于 \(K\),此时答案为 \(1\);否则,答案为 \(0\)。
(2)\(x,y\) 都等于 \(0\),显然,由于 \(K\geqslant 1\),且无法选出一对数使得它们的和为正整数,所以答案为 \(0\)。
分类讨论完这些情况后,代码就不难打了。
Code
int main() {
MT {
ll x = Rll, y = Rll, k = Rll;
if(!x && y && !(k % y)) puts("1");
else if(!y && x && !(k % x)) puts("1");
else write(min((!x ? 0 : k / x), (!y ? 0 : k / y))), puts("");
}
return 0;
}
LuoguP7441 「EZEC-7」Erinnerung 题解的更多相关文章
- 「GXOI / GZOI2019」简要题解
「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...
- loj#2054. 「TJOI / HEOI2016」树
题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...
- 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)
[题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...
- 洛谷比赛 「EZEC」 Round 4
洛谷比赛 「EZEC」 Round 4 T1 zrmpaul Loves Array 题目描述 小 Z 有一个下标从 \(1\) 开始并且长度为 \(n\) 的序列,初始时下标为 \(i\) 位置的数 ...
- 「POJ 3666」Making the Grade 题解(两种做法)
0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)
题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...
- LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_ ...
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
随机推荐
- 快上车丨直播课“Hello ArkansasUI:初识Slider组件(eTS语言)”来啦!
11月24日19:00-20:30,Hello HarmonyOS系列课程第二期线上直播,将手把手教你使用最新的ArkUI进行开发,学习eTS语言.Slider组件和Image组件.完成本期直播课的学 ...
- adb server version (32) doesn't match this client (39); killing...解决办法
输入今天遇到,安装AndroidSDK之后,已经配置好环境变量,输入adb可运行,但是输入adb devices之后就出现adb server version (32) doesn't match t ...
- CF1361C Johnny and Megan's Necklace
考虑\(2^x | (u \oplus v)\)的最大\(x\)小于等于\(20\) 这种题目,可以考虑搬到图上做. 我们枚举\(x\)那么对\((u\ mod\ 2^x,v\ mod\ 2^x)\) ...
- Python如何支持读入gz压缩或未压缩文件?
目录 需求 示例代码 笨办法 Pythonic方法 需求 要写一个接口,同时支持压缩和未压缩文件读入 示例代码 笨办法 import os import gzip filename = sys.arg ...
- mac 下 如何在同一窗口打开多个终端并实现快捷键切换
相信大家编代码的时候都会遇到,每次需要在头文件,库文件和源码文件中编代码的时候,总是需要在几个文件中切换来切换去的,而且一个文件就一个终端窗口,每次都要用鼠标点来点去,非常麻烦,所以如果能把这几个文件 ...
- Python异步IO之select
1. select模块的基本使用(以socket为例) 1 # -*- coding:utf-8 -*- 2 # Author:Wong Du 3 4 import select 5 import s ...
- GraphScope 集群部署
GraphScope 集群部署 1 k8s集群搭建 大致步骤如下: 安装docker.在ubuntu上,可以简单的通过命令sudo apt install docker.io来安装. 安装kubele ...
- 02-爬取http://www.allitebooks.org/网站,获取图片url,书名,简介,作者
import requests from lxml import etree from bs4 import BeautifulSoup import json class BookSpider(ob ...
- 我在项目中是这样配置Vue的
启用压缩,让页面加载更快 在我们开发的时候,为了方便调试,我们需要使用源码进行调试,但在生产环境,我们追求的更多的是加载更快,体验更好,这时候我们会将代码中的空格注释去掉,对代码进行混淆压缩,只为了让 ...
- 格式化代码(Eclipse 格式化代码块快捷键:Ctrl+Shift+F)
1.格式化java代码 : ①Ctrl+Shift+F 但是我们会遇到按 Ctrl+Shift+F不起作用的时候? Ctrl+Shift+F 在搜狗拼音里是简繁替换.一旦安装搜狗拼音这个快 ...