欢迎访问我的GitHub

https://github.com/zq2599/blog_demos

内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;

Flink处理函数实战系列链接

  1. 深入了解ProcessFunction的状态操作(Flink-1.10)
  2. ProcessFunction
  3. KeyedProcessFunction类
  4. ProcessAllWindowFunction(窗口处理)
  5. CoProcessFunction(双流处理)

关于处理函数(Process Function)

如下图,在常规的业务开发中,SQL、Table API、DataStream API比较常用,处于Low-level的Porcession相对用得较少,从本章开始,我们一起通过实战来熟悉处理函数(Process Function),看看这一系列的低级算子可以带给我们哪些能力?

关于ProcessFunction类

处理函数有很多种,最基础的应该ProcessFunction类,来看看它的类图,可见有RichFunction的特性open、close,然后自己有两个重要的方法processElement和onTimer:



常用特性如下所示:

  1. 处理单个元素;
  2. 访问时间戳;
  3. 旁路输出;

接下来写两个应用体验上述功能;

版本信息

  1. 开发环境操作系统:MacBook Pro 13寸, macOS Catalina 10.15.3
  2. 开发工具:IDEA ULTIMATE 2018.3
  3. JDK:1.8.0_211
  4. Maven:3.6.0
  5. Flink:1.9.2

源码下载

如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):

名称 链接 备注
项目主页 https://github.com/zq2599/blog_demos 该项目在GitHub上的主页
git仓库地址(https) https://github.com/zq2599/blog_demos.git 该项目源码的仓库地址,https协议
git仓库地址(ssh) git@github.com:zq2599/blog_demos.git 该项目源码的仓库地址,ssh协议

这个git项目中有多个文件夹,本章的应用在flinkstudy文件夹下,如下图红框所示:

创建工程

执行以下命令创建一个flink-1.9.2的应用工程:

mvn \
archetype:generate \
-DarchetypeGroupId=org.apache.flink \
-DarchetypeArtifactId=flink-quickstart-java \
-DarchetypeVersion=1.9.2

按提示输入groupId:com.bolingcavalry,architectid:flinkdemo

第一个demo

第一个demo用来体验以下两个特性:

  1. 处理单个元素;
  2. 访问时间戳;

创建Simple.java,内容如下:

package com.bolingcavalry.processfunction;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.util.Collector; public class Simple {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); // 并行度为1
env.setParallelism(1); // 设置数据源,一共三个元素
DataStream<Tuple2<String,Integer>> dataStream = env.addSource(new SourceFunction<Tuple2<String, Integer>>() {
@Override
public void run(SourceContext<Tuple2<String, Integer>> ctx) throws Exception {
for(int i=1; i<4; i++) { String name = "name" + i;
Integer value = i;
long timeStamp = System.currentTimeMillis(); // 将将数据和时间戳打印出来,用来验证数据
System.out.println(String.format("source,%s, %d, %d\n",
name,
value,
timeStamp)); // 发射一个元素,并且戴上了时间戳
ctx.collectWithTimestamp(new Tuple2<String, Integer>(name, value), timeStamp); // 为了让每个元素的时间戳不一样,每发射一次就延时10毫秒
Thread.sleep(10);
}
} @Override
public void cancel() { }
}); // 过滤值为奇数的元素
SingleOutputStreamOperator<String> mainDataStream = dataStream
.process(new ProcessFunction<Tuple2<String, Integer>, String>() {
@Override
public void processElement(Tuple2<String, Integer> value, Context ctx, Collector<String> out) throws Exception {
// f1字段为奇数的元素不会进入下一个算子
if(0 == value.f1 % 2) {
out.collect(String.format("processElement,%s, %d, %d\n",
value.f0,
value.f1,
ctx.timestamp()));
}
}
}); // 打印结果,证明每个元素的timestamp确实可以在ProcessFunction中取得
mainDataStream.print(); env.execute("processfunction demo : simple");
}
}

这里对上述代码做个介绍:

  1. 创建一个数据源,每个10毫秒发出一个元素,一共三个,类型是Tuple2,f0是个字符串,f1是整形,每个元素都带时间戳;
  2. 数据源发出元素时,提前把元素的f0、f1、时间戳打印出来,和后面的数据核对是否一致;
  3. 在后面的处理中,创建了ProcessFunction的匿名子类,里面可以处理上游发来的每个元素,并且还能取得每个元素的时间戳(这个能力很重要),然后将f1字段为奇数的元素过滤掉;
  4. 最后将ProcessFunction处理过的数据打印出来,验证处理结果是否符合预期;

直接执行Simple类,结果如下,可见过滤和提取时间戳都成功了:

第二个demo

第二个demo是实现旁路输出(Side Outputs),对于一个DataStream来说,可以通过旁路输出将数据输出到其他算子中去,而不影响原有的算子的处理,下面来演示旁路输出:

创建SideOutput类:

package com.bolingcavalry.processfunction;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;
import java.util.ArrayList;
import java.util.List; public class SideOutput {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 并行度为1
env.setParallelism(1); // 定义OutputTag
final OutputTag<String> outputTag = new OutputTag<String>("side-output"){}; // 创建一个List,里面有两个Tuple2元素
List<Tuple2<String, Integer>> list = new ArrayList<>();
list.add(new Tuple2("aaa", 1));
list.add(new Tuple2("bbb", 2));
list.add(new Tuple2("ccc", 3)); //通过List创建DataStream
DataStream<Tuple2<String, Integer>> fromCollectionDataStream = env.fromCollection(list); //所有元素都进入mainDataStream,f1字段为奇数的元素进入SideOutput
SingleOutputStreamOperator<String> mainDataStream = fromCollectionDataStream
.process(new ProcessFunction<Tuple2<String, Integer>, String>() {
@Override
public void processElement(Tuple2<String, Integer> value, Context ctx, Collector<String> out) throws Exception { //进入主流程的下一个算子
out.collect("main, name : " + value.f0 + ", value : " + value.f1); //f1字段为奇数的元素进入SideOutput
if(1 == value.f1 % 2) {
ctx.output(outputTag, "side, name : " + value.f0 + ", value : " + value.f1);
}
}
}); // 禁止chanin,这样可以在页面上看清楚原始的DAG
mainDataStream.disableChaining(); // 取得旁路数据
DataStream<String> sideDataStream = mainDataStream.getSideOutput(outputTag); mainDataStream.print();
sideDataStream.print(); env.execute("processfunction demo : sideoutput");
}
}

这里对上述代码做个介绍:

  1. 数据源是个集合,类型是Tuple2,f0字段是字符串,f1字段是整形;
  2. ProcessFunction的匿名子类中,将每个元素的f0和f1拼接成字符串,发给主流程算子,再将f1字段为奇数的元素发到旁路输出;
  3. 数据源发出元素时,提前把元素的f0、f1、时间戳打印出来,和后面的数据核对是否一致;
  4. 将主流程和旁路输出的元素都打印出来,验证处理结果是否符合预期;

执行SideOutput看结果,如下图,main前缀的都是主流程算子,一共三条记录,side前缀的是旁路输出,只有f1字段为奇数的两条记录,符合预期:



上面的操作都是在IDEA上执行的,还可以将flink单独部署,再将上述工程构建成jar,提交到flink的jobmanager,可见DAG如下:



至此,处理函数中最简单的ProcessFunction类的学习和实战就完成了,接下来的文章我们会尝试更多了类型的处理函数;

欢迎关注公众号:程序员欣宸

微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...

https://github.com/zq2599/blog_demos

Flink处理函数实战之二:ProcessFunction类的更多相关文章

  1. Flink处理函数实战之三:KeyedProcessFunction类

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  2. Flink处理函数实战之四:窗口处理

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  3. Flink处理函数实战之一:深入了解ProcessFunction的状态(Flink-1.10)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  4. Flink处理函数实战之五:CoProcessFunction(双流处理)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. Flink的sink实战之二:kafka

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  6. Flink的sink实战之一:初探

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  7. Flink的sink实战之三:cassandra3

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  8. Flink的sink实战之四:自定义

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  9. [Java聊天室server]实战之二 监听类

    前言 学习不论什么一个稍有难度的技术,要对其有充分理性的分析,之后果断做出决定---->也就是人们常说的"多谋善断":本系列尽管涉及的是socket相关的知识,但学习之前,更 ...

随机推荐

  1. 怎样学习C语言(献给迷茫的C爱好者)!

    一 .怎样学习C语言 很多人对学习C语言感到无从下手,经常问我同一个问题:究竟怎样学习C语言?我是一个教师,已经开发了很多年的程序,和很多刚刚起步的人一样,学习的第一个计算机语言就是C语言. 经过这些 ...

  2. 【贪心算法】HDU 5747 Aaronson

    题目大意 vjudge链接 给你一个n,m,求解满足等式x0+2x1+4x2+...+2mxm=n的x0~xm的最小和(xi为非负整数) 数据范围 0≤n,m≤109 思路 n和m都在int范围内,所 ...

  3. docker-搭建单机 kafka+zookeeper

    1 zookeeper   docker run --name zookeeper -p 12181:2181 -d wurstmeister/zookeeper:latest   2 kafka   ...

  4. 模块二:ES新特性与TypeScript、JS性能优化

    一.请说出下列最终得执行结果,并解释为什么.

  5. mapstruct 快速使用

    mapstruct 快速使用 mapstruct 主要的作用则是用来复制对象字段使用,功能非常的强大.在没有使用 mapstruct 之前可能都在使用 BeanUtils ,但是 BeanUtils ...

  6. Bitmap缩放(二)

    先得到位图宽高不用加载位图,然后按ImageView比例缩放,得到缩放的尺寸进行压缩并加载位图.inSampleSize是缩放多少倍,小于1默认是1,通过调节其inSampleSize参数,比如调节为 ...

  7. CentOS7 安装telnet-0.17-64.el7.x86_64

    1.安装客服端,服务端,xinetd yum -y install telnet telnet-server xinetd 以上要想完成telnet安装,telnet服务端和xinetd必须安装,至于 ...

  8. gulp + angularjs

    示例项目介绍 文中使用的例子是一个基于 Angular.js 实现的网页版 Todo App,在 Github 中下载angular-quickstart.项目代码结构如下 清单 5. 项目目录结构 ...

  9. java关键字之abstract

    Java 允许类,借口或成员方法具有抽象属性. abstract  修饰的类叫做抽象类,该类不能被实例化. abstract  修饰的方法叫抽象方法,抽象方法只有声明部分,没有具体的方法体. 接口总是 ...

  10. 01_cifsd 高性能网络共享服务

    01_cifsd 高性能网络共享服务 1.简介 cifsd 是一款高性能I/O网络文件共享服务, 通过一种与kernel直接交互的方式实现, github简介:https://github.com/n ...