机器学习实战基础(十二):sklearn中的数据预处理和特征工程(五) 数据预处理 Preprocessing & Impute 之 处理分类特征:处理连续性特征 二值化与分段
处理连续性特征 二值化与分段
sklearn.preprocessing.Binarizer
根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量。大于阈值的值映射为1,而小于或等于阈值的值映射为0。默认阈值为0时,特征中所有的正值都映射到1。
二值化是对文本计数数据的常见操作,分析人员可以决定仅考虑某种现象的存在与否。它还可以用作考虑布尔随机变量的估计器的预处理步骤(例如,使用贝叶斯设置中的伯努利分布建模)。
#将年龄二值化
data_2 = data.copy() from sklearn.preprocessing import Binarizer
X = data_2.iloc[:,0].values.reshape(-1,1) #类为特征专用,所以不能使用一维数组
transformer = Binarizer(threshold=30).fit_transform(X) transformer
preprocessing.KBinsDiscretizer
这是将连续型变量划分为分类变量的类,能够将连续型变量排序后按顺序分箱后编码。总共包含三个重要参数:
from sklearn.preprocessing import KBinsDiscretizer X = data.iloc[:,0].values.reshape(-1,1)
est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
est.fit_transform(X) #查看转换后分的箱:变成了一列中的三箱
set(est.fit_transform(X).ravel()) est = KBinsDiscretizer(n_bins=3, encode='onehot', strategy='uniform')
#查看转换后分的箱:变成了哑变量
est.fit_transform(X).toarray()
机器学习实战基础(十二):sklearn中的数据预处理和特征工程(五) 数据预处理 Preprocessing & Impute 之 处理分类特征:处理连续性特征 二值化与分段的更多相关文章
- 机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据
机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Ma ...
- 机器学习实战基础(二十):sklearn中的降维算法PCA和SVD(一) 之 概述
概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提 ...
- 机器学习实战基础(二十四):sklearn中的降维算法PCA和SVD(五) PCA与SVD 之 重要接口inverse_transform
重要接口inverse_transform 在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵 ...
- 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤
相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...
- 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤
Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...
- 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值
缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...
- 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...
随机推荐
- 手写网页扫雷之js部分(vue)
var vm = new Vue({ el:"#ui", data(){ return{ num:0, saoleiStyle:{ width: "0px", ...
- Ehab and a 2-operation task【数论思想】
Ehab and a 2-operation task 题目链接(点击) You're given an array aa of length nn. You can perform the foll ...
- isinstance用法
''' 作用:来判断一个对象是否是一个已知的类型. 其第一个参数(object)为对象,第二个参数(type)为类型名(int...)或类型名的一个列表((int,list,float)是一个列表). ...
- cb31a_c++_STL_算法_查找算法_(4)find_first_of
cb31a_c++_STL_算法_查找算法_(4)find_first_offind_first_of(b,e,sb,se),sb,second begin, se,second end();find ...
- 万级TPS亿级流水-中台账户系统架构设计
万级TPS亿级流水-中台账户系统架构设计 标签:高并发 万级TPS 亿级流水 账户系统 背景 业务模型 应用层设计 数据层设计 日切对账 背景 我们需要给所有前台业务提供统一的账户系统,用来支撑所有前 ...
- 磨皮美颜算法 附完整C代码
前言 2017年底时候写了这篇<集 降噪 美颜 虚化 增强 为一体的极速图像润色算法 附Demo程序> 这也算是学习过程中比较有成就感的一个算法. 自2015年做算法开始到今天,还有个把月 ...
- Cookie的简介与使用
Cookie 历来指就着牛奶一起吃的点心.然而,在因特网内,"Cookie"这个字有了完全不同的意思.那么"Cookie"到底是什么呢?"Cookie ...
- .NETCore微服务探寻(二) - 认证与授权
前言 一直以来对于.NETCore微服务相关的技术栈都处于一个浅尝辄止的了解阶段,在现实工作中也对于微服务也一直没有使用的业务环境,所以一直也没有整合过一个完整的基于.NETCore技术栈的微服务项目 ...
- 人脸识别Demo解析C#
概述 不管你注意到没有,人脸识别已经走进了生活的角角落落,钉钉已经支持人脸打卡,火车站实名认证已经增加了人脸自助验证通道,更别提各个城市建设的『智能城市』和智慧大脑了.在人脸识别业界,通常由人脸识别提 ...
- skywalking与pinpoint全链路追踪方案对比
由于公司目前有200多微服务,微服务之间的调用关系错综复杂,调用关系人工维护基本不可能实现,需要调研一套全链路追踪方案,初步调研之后选取了skywalking和pinpoint进行对比; 选取skyw ...