题意:

有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点。

思路:

按题意研究一下就会发现题目所求为。

\[(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n[gcd(i,j,k)==1])+(\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)==1])\\+(\sum_{i=1}^n\sum_{k=1}^n[gcd(i,k)==1])+(\sum_{j=1}^n\sum_{k=1}^n[gcd(j,k)==1])
\]

随便求其中一个,由莫比乌斯函数已知\(\sum_{d|n}\mu(d)=[n=1]\),替换可得

\[\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\sum_{d|n}\mu(d)=\sum_{d=1}^n\mu(d)*\lfloor{\frac{n}{d}}\rfloor^3
\]

其他情况同理。

参考:

莫比乌斯反演-让我们从基础开始

代码:

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1000000 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9;
using namespace std; int mu[maxn], vis[maxn];
int prime[maxn], cnt;
void getmu(int n){
memset(vis, 0, sizeof(vis));
memset(mu, 0, sizeof(mu));
cnt = 0;
mu[1] = 1;
for(int i = 2; i <= n; i++) {
if(!vis[i]){
prime[cnt++] = i;
mu[i] = -1;
}
for(int j = 0; j < cnt && prime[j] * i <= n; j++){
vis[prime[j] * i] = 1;
if(i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
}
ll get(int n){
return 1LL * n * n * n + 3LL * n * n + 3LL * n;
}
int main(){
int n, T;
getmu(1000000);
scanf("%d", &T);
while(T--){
scanf("%d", &n);
ll ans = 0;
for(int i = 1; i <= n; i++){
ans += 1LL * mu[i] * get(n / i);
}
printf("%lld\n", ans);
}
return 0;
}

SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解的更多相关文章

  1. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  2. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  3. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演

    这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...

  4. spoj 7001 Visible Lattice Points莫比乌斯反演

    Visible Lattice Points Time Limit:7000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  5. SPOJ 7001 Visible Lattice Points (莫比乌斯反演)

    题意:求一个正方体里面,有多少个顶点可以在(0,0,0)位置直接看到,而不被其它点阻挡.也就是说有多少个(x,y,z)组合,满足gcd(x,y,z)==1或有一个0,另外的两个未知数gcd为1 定义f ...

  6. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  7. Spoj 7001 Visible Lattice Points 莫比乌斯,分块

    题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37193   Visible Lattice Points Time L ...

  8. spoj7001 Visible Lattice Points 莫比乌斯反演+三维空间互质对数

    /** 题目:Visible Lattice Points 链接:https://vjudge.net/contest/178455#problem/A 题意:一个n*n*n大小的三维空间.一侧为(0 ...

  9. SPOJ VLATTICE - Visible Lattice Points 【“小”大数加减】

    题目链接 一道比较简单的莫比乌斯反演,不过ans会爆long long,我是用结构体来存结果的,结构体中两个LL型变量分别存大于1e17和小于1e17的部分 #include<bits/stdc ...

随机推荐

  1. CMU数据库(15-445)Lab1-BufferPoolManager

    0. 关于环境搭建请看 https://www.cnblogs.com/JayL-zxl/p/14307260.html 1. Task1 LRU REPLACEMENT POLICY 0. 任务描述 ...

  2. 什么是Etcd,如何运维Etcd ?

    介绍 ETCD 是一个分布式.可靠的 key-value 存储的分布式系统,用于存储分布式系统中的关键数据:当然,它不仅仅用于存储,还提供配置共享及服务发现:基于Go语言实现. ETCD的特点 简单: ...

  3. feign使用okHttpClient,调用原理

    最近项目中 spring cloud 用到http请求,使用feign,配置okhttp,打算配置一下就直接使用,不过在压测与调优过程中遇到一些没有预测到的问题,附上排查与解析结 yml.pom配置 ...

  4. python 字典(formkey 建立 取值 赋值 删除 )

      formkey快速建立空字典   result = {}.fromkeys(['name','age','job'],None) print(result)   #往字典里添加元素 result. ...

  5. MySQL调优之索引优化

    一.索引基本知识 1.索引的优点 1.减少了服务器需要扫描的数据量 2.帮助服务器避免排序和临时表 例子: select * from emp orde by sal desc; 那么执行顺序: 所以 ...

  6. 写给 Poppy 的 MySQL 速查表

    昨天 Poppy 问我是不是应该学一些网页开发的东西, 我的回答是这样的: 今天花了点时间汇总了一些 MySQL 简单的命令. ======== 正文分割线 ======== 有哪些常见的数据库: O ...

  7. Spring Boot使用MongoDB GridFS进行文件的操作

    1. GridFS简介 GridFS 用于存储和恢复那些超过16M(BSON文件限制)的文件(如:图片.音频.视频等),但是它是存储在MonoDB的集合中. GridFS 会将文件对象分割成多个的ch ...

  8. UI自动化测试实战

    前言 前面我们已经搭建好了wordpress网站,如果需要查看运行效果可以看我前面的搭建文章,下面我们来进行自动化测试的练习. 示例 首先我们测试自动登陆 import unittest from s ...

  9. 网络流 - dinic + 当前弧优化【代码】

    这是初学网络流的时候从<算法竞赛进阶指南>抄下来的一份代码,自己理解的也不是很透彻. 注意,边要从 \(1\) 开始计,不然直接 \(xor\) 运算的话取反边会直接炸掉. #includ ...

  10. 浏览器关闭后,Session就销毁了吗?

    https://blog.csdn.net/QQ1012421396/article/details/70842148 话题:       当浏览器关闭后,Session就销毁了吗?答案:      ...