数据倾斜只会发生在shuffle过程中。这里给大家罗列一些常用的并且可能会触发shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。出现数据倾斜时,可能就是你的代码中使用了这些算子中的某一个所导致的。

​ 某个task执行特别慢的情况

首先要看的,就是数据倾斜发生在第几个stage中。

可以通过Spark Web UI来查看当前运行到了第几个stage,看一下当前这个stage各个task分配的数据量,从而进一步确定是不是task分配的数据不均匀导致了数据倾斜。

比如下图中,倒数第三列显示了每个task的运行时间。明显可以看到,有的task运行特别快,只需要几秒钟就可以运行完;而有的task运行特别慢,需要几分钟才能运行完,此时单从运行时间上看就已经能够确定发生数据倾斜了。此外,倒数第一列显示了每个task处理的数据量,明显可以看到,运行时间特别短的task只需要处理几百KB的数据即可,而运行时间特别长的task需要处理几千KB的数据,处理的数据量差了10倍。此时更加能够确定是发生了数据倾斜。

知道数据倾斜发生在哪一个stage之后,接着我们就需要根据stage划分原理,推算出来发生倾斜的那个stage对应代码中的哪一部分,这部分代码中肯定会有一个shuffle类算子。精准推算stage与代码的对应关系,这里介绍一个相对简单实用的推算方法:只要看到Spark代码中出现了一个shuffle类算子或者是Spark SQL的SQL语句中出现了会导致shuffle的语句(比如group by语句),那么就可以判定,以那个地方为界限划分出了前后两个stage。

这里我们就以Spark最基础的入门程序——单词计数来举例,如何用最简单的方法大致推算出一个stage对应的代码。如下示例,在整个代码中,只有一个reduceByKey是会发生shuffle的算子,因此就可以认为,以这个算子为界限,会划分出前后两个stage。

stage0,主要是执行从textFile到map操作,以及执行shuffle write操作。shuffle write操作,我们可以简单理解为对pairs RDD中的数据进行分区操作,每个task处理的数据中,相同的key会写入同一个磁盘文件内。

stage1,主要是执行从reduceByKey到collect操作,stage1的各个task一开始运行,就会首先执行shuffle read操作。执行shuffle read操作的task,会从stage0的各个task所在节点拉取属于自己处理的那些key,然后对同一个key进行全局性的聚合或join等操作,在这里就是对key的value值进行累加。stage1在执行完reduceByKey算子之后,就计算出了最终的wordCounts RDD,然后会执行collect算子,将所有数据拉取到Driver上,供我们遍历和打印输出。

\ val\ conf = \ new\ SparkConf() \ val\ sc = \ new\ SparkContext( conf ) \ val\ lines = sc .textFile( \ "hdfs://..."\ ) \ val\ words = lines .flatMap(.split( \ " "\ )) \ val\ pairs = words .map((, 1)) \ val\ wordCounts = pairs .reduceByKey(_ + ) wordCounts .collect().foreach( println ())

通过对单词计数程序的分析,希望能够让大家了解最基本的stage划分的原理,以及stage划分后shuffle操作是如何在两个stage的边界处执行的。然后我们就知道如何快速定位出发生数据倾斜的stage对应代码的哪一个部分了。比如我们在Spark Web UI或者本地log中发现,stage1的某几个task执行得特别慢,判定stage1出现了数据倾斜,那么就可以回到代码中定位出stage1主要包括了reduceByKey这个shuffle类算子,此时基本就可以确定是由reduceByKey算子导致的数据倾斜问题。比如某个单词出现了100万次,其他单词才出现10次,那么stage1的某个task就要处理100万数据,整个stage的速度就会被这个task拖慢。

\ 某个task莫名其妙内存溢出的情况\ \

这种情况下去定位出问题的代码就比较容易了。我们建议直接看yarn-client模式下本地log的异常栈,或者是通过YARN查看yarn-cluster模式下的log中的异常栈。一般来说,通过异常栈信息就可以定位到你的代码中哪一行发生了内存溢出。然后在那行代码附近找找,一般也会有shuffle类算子,此时很可能就是这个算子导致了数据倾斜。

但是大家要注意的是,不能单纯靠偶然的内存溢出就判定发生了数据倾斜。因为自己编写的代码的bug,以及偶然出现的数据异常,也可能会导致内存溢出。因此还是要按照上面所讲的方法,通过Spark Web UI查看报错的那个stage的各个task的运行时间以及分配的数据量,才能确定是否是由于数据倾斜才导致了这次内存溢出。

\ 查看导致数据倾斜的key的数据分布情况\ \

知道了数据倾斜发生在哪里之后,通常需要分析一下那个执行了shuffle操作并且导致了数据倾斜的RDD/Hive表,查看一下其中key的分布情况。这主要是为之后选择哪一种技术方案提供依据。针对不同的key分布与不同的shuffle算子组合起来的各种情况,可能需要选择不同的技术方案来解决。

此时根据你执行操作的情况不同,可以有很多种查看key分布的方式:

如果是Spark SQL中的group by、join语句导致的数据倾斜,那么就查询一下SQL中使用的表的key分布情况。

如果是对Spark RDD执行shuffle算子导致的数据倾斜,那么可以在Spark作业中加入查看key分布的代码,比如RDD.countByKey()。然后对统计出来的各个key出现的次数,collect/take到客户端打印一下,就可以看到key的分布情况。

举例来说,对于上面所说的单词计数程序,如果确定了是stage1的reduceByKey算子导致了数据倾斜,那么就应该看看进行reduceByKey操作的RDD中的key分布情况,在这个例子中指的就是pairs RDD。如下示例,我们可以先对pairs采样10%的样本数据,然后使用countByKey算子统计出每个key出现的次数,最后在客户端遍历和打印样本数据中各个key的出现次数。

Spark-5-如何定位导致数据倾斜的代码的更多相关文章

  1. 【Spark调优】大表join大表,少数key导致数据倾斜解决方案

    [使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一 ...

  2. Spark学习之路 (九)SparkCore的调优之数据倾斜调优

    摘抄自:https://tech.meituan.com/spark-tuning-pro.html 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Sp ...

  3. Spark(十)Spark之数据倾斜调优

    一 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作 ...

  4. Spark性能优化:数据倾斜调优

    前言 继<Spark性能优化:开发调优篇>和<Spark性能优化:资源调优篇>讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化 ...

  5. 数据倾斜是多么痛?spark作业调优秘籍

    目录视图 摘要视图 订阅 [观点]物联网与大数据将助推工业应用的崛起,你认同么?      CSDN日报20170703——<从高考到程序员——我一直在寻找答案>      [直播]探究L ...

  6. 【转】数据倾斜是多么痛?spark作业/面试/调优必备秘籍

    原博文出自于: http://sanwen.net/a/gqkotbo.html 感谢! 来源:数盟 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性 ...

  7. Spark学习之路 (九)SparkCore的调优之数据倾斜调优[转]

    调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题--数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的 ...

  8. 【Spark调优】数据倾斜及排查

    [数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或j ...

  9. 实战 | Hive 数据倾斜问题定位排查及解决

    Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措 ...

随机推荐

  1. FL Studio采样器设置的功能是什么

    FL Studio是一款很集成化的软件,它和很多其他的软件不同,FL Studio的通道中集成了很多采样器.这种整合的方式不但功能强大而且也很便捷.今天小编就来为大家详细的简介下FL Studio采样 ...

  2. 利用perspective 和 transform 里面的几个参数来实现旋转照片墙

    旋转照片墙 首先,来看下,是什么效果吧,上效果图 ↓ 其实这个东西,很容易制作,先说下思路, 把照片都给叠在一起,然后 rotateY 旋转,给每张图片 旋转不一样的角度能构成一圈, 然后transl ...

  3. python debug调试

    ------------恢复内容开始------------ 一.debug 1.step over f8(单步调试) 2.进入到下一个断点 3.运行到指定行 4.进入到对应的代码行,(和单步调试配合 ...

  4. jenkins运行错误解决办法

    本地搭建好jenkis服务器,运行然后登陆上管理后台 构建好运行命令,然后进行构建出现如下错误说没有python运行环境 ,本地已经配置好python环境,并且终端能正常运行. 解决方法:jenkin ...

  5. 【P4178】Tree——点分治

    (题面来自luogu) 题目描述 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K 输入格式 N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 ...

  6. JavaSE 学习笔记06丨并发

    Chapter 12. 并发 12.1 并发与并行 并发:指两个或多个事件在同一个时间段内发生. 并行:指两个或多个事件在同一时刻发生(同时发生). 在操作系统中,并发指的是在一段时间内宏观上有多个程 ...

  7. C语言讲义——数组和指针

    数组名表示的是这个数组的首地址.即如果有int a[10],则a 相当于&a[0]. #include <stdio.h> main() { int a[5]= {1,3,5,7, ...

  8. Codeforces Round 665 (div2)

    2020.8.22 装修完了我的博客,喜欢这个造型,挂上友链就更好了 昨天cf就是一个彻头彻尾的悲剧,本来能上蓝,结果因为在A题耽误时间过多导致掉了30分,不过没关系,这算是一个小波动吧,影响不了什么 ...

  9. moviepy音视频剪辑:使用rotate函数实现视频变换处理以及参数expand取值为True时的花屏问题解决方案

    ☞ ░ 前往老猿Python博文目录 ░ 一.rotate函数功能介绍 moviepy的rotate函数用于将剪辑逆时针旋转指定的角度或弧度. 调用语法:rotate(clip, angle, uni ...

  10. PyQt(Python+Qt)学习随笔:QTableWidgetItem项文本和项对齐的setText、setTextAlignment方法

    老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 QTableWidget部件中的QTableWidgetItem项的文本可以通过text()和set ...