互联网找的e是无理数的初等证明
e的两种计算方式
\(e=lim_{n \to \infty}(1+\frac{1}{n})^n\)
\(e=\sum_{n=0}^{+\infty}\frac{1}{n!}\)
\(即,e=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}\frac{1}{3!}+\cdot\cdot\)
\(所以2<e<1+1+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\cdot\cdot\cdot\)=3
\(即2<e<3\)
\(可知e不是整数,用反证法,假设e是有理数,即e=\frac{p}{q},且q不是1,即q\geqslant2,则\)
\(q!\cdot e=q!\sum_{n=0}^{+\infty}\frac{1}{n!}\quad\quad\quad(1)\)
\(\quad\quad\quad=\sum_{n=0}^{+\infty}q!\frac{1}{n!}\)
\(\quad\quad\quad=\sum_{n=0}^{q}q!\frac{1}{n!}+\sum_{n=q+1}^{+\infty}q!\frac{1}{n!}\)
\(上式的右侧第二项为:\\\)
\(\sum_{n=q+1}^{+\infty}q!\frac{1}{n!}\)
\(\quad=\sum_{n=q+1}^{+\infty}\frac{1}{q+1}+\frac{1}{q+1}\frac{1}{q+2}+\cdot\cdot\)
\(\quad\leqslant\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\cdot\cdot<=\frac{1}{2}\)
\((1)式的左侧\quad q!\cdot e=q!\frac{p}{q}=(q-1)!p,是整数,而右侧有分数,显然矛盾\)
互联网找的e是无理数的初等证明的更多相关文章
- 2014中秋节,用java为QQ游戏美女找茬写辅助
引子 今年中秋闲在家,总要找点事做. 前几天开始学python,很早之前就有计划拿下这门语言了,可惜一直拖到现在……不可否认,我也是个拖沓症患者.在学习python的过程中 ...
- MT【15】证明无理数(1)
证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan1 ...
- 素数计数函数$\pi(x)\sim \Theta(\frac{x}{\log{x}})$的一个初等方法——素数定理的估计
$\DeclareMathOperator{\lcm}{lcm}$ 本文的方法来源于GTM 190:"Problems in Algebraic Number Theory",给出 ...
- OSGi——面向服务架构规范简述
OSGi——面向服务架构规范简述 去年我们组要开发一个新的产品,在讨论产品架构路线的时候,美国的架构师向大家征集了架构设计思想(我推荐了SCSF),有一位工程师向他推荐了OSGi.以前我还没有听过OS ...
- SuSE Apache2 VirtualHost Build
1,linux version:openSuSE 12.1 2,add ServerName to DNS(johv.ts.com ,use the same IP) 3,mkdir /srv/www ...
- 终于解决了PHP调用SOAP过程中的种种问题。(转)
最近在做公司和第三方的一个合作项目,需要调用统一验证接口和统一支付接口.由于牵涉公司机密,所以我要单独写一层PHP的接口给第三方用.前面那个验证接口主要卡在了des加密的方式上,这个有时间再说.这篇主 ...
- CXF之一 基础理论介绍
WebService介绍 WebService让一个程序可以透明地调用互联网程序,不用管具体的实现细节.只要WebService公开了服务接口,远程客户端就可以调用服务.WebService是基于 ...
- Stern-Brocot Tree
在<具体数学>4.5中看到了SB-Tree,觉得非常有趣,就去研究了一下. 首先介绍一下Stern-Brocot Tree.Stern-Brocot Tree是一种能将所有的最简分数都表示 ...
- Python爬虫入门教程 32-100 B站博人传评论数据抓取 scrapy
1. B站博人传评论数据爬取简介 今天想了半天不知道抓啥,去B站看跳舞的小姐姐,忽然看到了评论,那就抓取一下B站的评论数据,视频动画那么多,也不知道抓取哪个,选了一个博人传跟火影相关的,抓取看看.网址 ...
随机推荐
- 入门大数据---基于Zookeeper搭建Kafka高可用集群
一.Zookeeper集群搭建 为保证集群高可用,Zookeeper 集群的节点数最好是奇数,最少有三个节点,所以这里搭建一个三个节点的集群. 1.1 下载 & 解压 下载对应版本 Zooke ...
- JavaScript图形实例:窗花图案
1.窗花基本框线 设定曲线的坐标方程为: n=25; r=100; x=r/n*cos(5*θ)+r*cos(θ); y=r/n*sin(5*θ)+r*sin(θ); (0≤θ≤2π ...
- keras 从txt加载预测数据
ImageDataGenerator.flow_from_directory()的用法已经非常多了,优点是简单方便,但数据量很大时,需要组织目录结构和copy数据,很浪费资源和时间 1. 训练时从tx ...
- .NET Core控制台利用【Options】读取Json配置文件
创建一个 .NET Core控制台程序 添加依赖 Microsoft.Extensions.Configuration Microsoft.Extensions.Configuration.FileE ...
- python之浅谈计算机基础
目录 一.计算机基础之编程 什么是编程语言 什么是编程 为什么要编程 二.计算机组成原理 1. 计算机五大组成 CPU 存储器 输入设备 输出设备 2.计算机五大部分补充 CPU相关 应用程序启动流程 ...
- Electron 初识-搭建一个简易桌面应用
Electron 快速入门 简介 Electron 可以让你使用纯 JavaScript 调用丰富的原生 APIs 来创造桌面应用.你可以把它看作是专注于桌面应用而不是 web 服务器的,io.j ...
- vx小程序(1)
一.程序配置 app.json 1. pages字段——用于描述当前小程序的页面路径. 2.window字段——定义小程序所有页面的顶部背景颜色,文字颜色等. 注意:可以在pages/logs目录下的 ...
- Cow Relays,过N条边的最短路
题目链接 题意: 找从a到b的经过N条边的最短路 分析: 有点板子...方法:矩阵存,然后有个类似快速幂的思想,然后再加上离散化就好了. 没啥写的,只能说说矩阵了,我用的方法是先枚举i,j再枚举k,当 ...
- 【Windows10】如何使用Segoe MDL2 Assets图标
众所周知,在Windows 10中,微软引入了汉堡菜单,方便Android和ios的开发者移植程序,而不需要单独为Windows设计一套UI.但有人可能发现在symbol icon里根本找不到所谓的汉 ...
- java NIO 实例之多人聊天
关键抽象 1.定义一个HashMap<String,SocketChannel>用户存储每个用户的管道. 2.服务端监听read事件,获取消息后轮询hashmap发送消息给用户模型内的所有 ...