e的两种计算方式

\(e=lim_{n \to \infty}(1+\frac{1}{n})^n\)

\(e=\sum_{n=0}^{+\infty}\frac{1}{n!}\)

\(即,e=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}\frac{1}{3!}+\cdot\cdot\)

\(所以2<e<1+1+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\cdot\cdot\cdot\)=3

\(即2<e<3\)

\(可知e不是整数,用反证法,假设e是有理数,即e=\frac{p}{q},且q不是1,即q\geqslant2,则\)

\(q!\cdot e=q!\sum_{n=0}^{+\infty}\frac{1}{n!}\quad\quad\quad(1)\)

\(\quad\quad\quad=\sum_{n=0}^{+\infty}q!\frac{1}{n!}\)

\(\quad\quad\quad=\sum_{n=0}^{q}q!\frac{1}{n!}+\sum_{n=q+1}^{+\infty}q!\frac{1}{n!}\)

\(上式的右侧第二项为:\\\)

\(\sum_{n=q+1}^{+\infty}q!\frac{1}{n!}\)

\(\quad=\sum_{n=q+1}^{+\infty}\frac{1}{q+1}+\frac{1}{q+1}\frac{1}{q+2}+\cdot\cdot\)

\(\quad\leqslant\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\cdot\cdot<=\frac{1}{2}\)

\((1)式的左侧\quad q!\cdot e=q!\frac{p}{q}=(q-1)!p,是整数,而右侧有分数,显然矛盾\)

互联网找的e是无理数的初等证明的更多相关文章

  1. 2014中秋节,用java为QQ游戏美女找茬写辅助

    引子        今年中秋闲在家,总要找点事做.        前几天开始学python,很早之前就有计划拿下这门语言了,可惜一直拖到现在……不可否认,我也是个拖沓症患者.在学习python的过程中 ...

  2. MT【15】证明无理数(1)

    证明:$tan3^0$是无理数. 分析:证明无理数的题目一般用反证法,最经典的就是$\sqrt{2}$是无理数的证明. 这里假设$tan3^0$是有理数,利用二倍角公式容易得到$tan6^0,tan1 ...

  3. 素数计数函数$\pi(x)\sim \Theta(\frac{x}{\log{x}})$的一个初等方法——素数定理的估计

    $\DeclareMathOperator{\lcm}{lcm}$ 本文的方法来源于GTM 190:"Problems in Algebraic Number Theory",给出 ...

  4. OSGi——面向服务架构规范简述

    OSGi——面向服务架构规范简述 去年我们组要开发一个新的产品,在讨论产品架构路线的时候,美国的架构师向大家征集了架构设计思想(我推荐了SCSF),有一位工程师向他推荐了OSGi.以前我还没有听过OS ...

  5. SuSE Apache2 VirtualHost Build

    1,linux version:openSuSE 12.1 2,add ServerName to DNS(johv.ts.com ,use the same IP) 3,mkdir /srv/www ...

  6. 终于解决了PHP调用SOAP过程中的种种问题。(转)

    最近在做公司和第三方的一个合作项目,需要调用统一验证接口和统一支付接口.由于牵涉公司机密,所以我要单独写一层PHP的接口给第三方用.前面那个验证接口主要卡在了des加密的方式上,这个有时间再说.这篇主 ...

  7. CXF之一 基础理论介绍

    WebService介绍   WebService让一个程序可以透明地调用互联网程序,不用管具体的实现细节.只要WebService公开了服务接口,远程客户端就可以调用服务.WebService是基于 ...

  8. Stern-Brocot Tree

    在<具体数学>4.5中看到了SB-Tree,觉得非常有趣,就去研究了一下. 首先介绍一下Stern-Brocot Tree.Stern-Brocot Tree是一种能将所有的最简分数都表示 ...

  9. Python爬虫入门教程 32-100 B站博人传评论数据抓取 scrapy

    1. B站博人传评论数据爬取简介 今天想了半天不知道抓啥,去B站看跳舞的小姐姐,忽然看到了评论,那就抓取一下B站的评论数据,视频动画那么多,也不知道抓取哪个,选了一个博人传跟火影相关的,抓取看看.网址 ...

随机推荐

  1. 入门大数据---基于Zookeeper搭建Kafka高可用集群

    一.Zookeeper集群搭建 为保证集群高可用,Zookeeper 集群的节点数最好是奇数,最少有三个节点,所以这里搭建一个三个节点的集群. 1.1 下载 & 解压 下载对应版本 Zooke ...

  2. JavaScript图形实例:窗花图案

    1.窗花基本框线 设定曲线的坐标方程为: n=25; r=100; x=r/n*cos(5*θ)+r*cos(θ); y=r/n*sin(5*θ)+r*sin(θ);          (0≤θ≤2π ...

  3. keras 从txt加载预测数据

    ImageDataGenerator.flow_from_directory()的用法已经非常多了,优点是简单方便,但数据量很大时,需要组织目录结构和copy数据,很浪费资源和时间 1. 训练时从tx ...

  4. .NET Core控制台利用【Options】读取Json配置文件

    创建一个 .NET Core控制台程序 添加依赖 Microsoft.Extensions.Configuration Microsoft.Extensions.Configuration.FileE ...

  5. python之浅谈计算机基础

    目录 一.计算机基础之编程 什么是编程语言 什么是编程 为什么要编程 二.计算机组成原理 1. 计算机五大组成 CPU 存储器 输入设备 输出设备 2.计算机五大部分补充 CPU相关 应用程序启动流程 ...

  6. Electron 初识-搭建一个简易桌面应用

    Electron ​ 快速入门 简介 Electron 可以让你使用纯 JavaScript 调用丰富的原生 APIs 来创造桌面应用.你可以把它看作是专注于桌面应用而不是 web 服务器的,io.j ...

  7. vx小程序(1)

    一.程序配置 app.json 1. pages字段——用于描述当前小程序的页面路径. 2.window字段——定义小程序所有页面的顶部背景颜色,文字颜色等. 注意:可以在pages/logs目录下的 ...

  8. Cow Relays,过N条边的最短路

    题目链接 题意: 找从a到b的经过N条边的最短路 分析: 有点板子...方法:矩阵存,然后有个类似快速幂的思想,然后再加上离散化就好了. 没啥写的,只能说说矩阵了,我用的方法是先枚举i,j再枚举k,当 ...

  9. 【Windows10】如何使用Segoe MDL2 Assets图标

    众所周知,在Windows 10中,微软引入了汉堡菜单,方便Android和ios的开发者移植程序,而不需要单独为Windows设计一套UI.但有人可能发现在symbol icon里根本找不到所谓的汉 ...

  10. java NIO 实例之多人聊天

    关键抽象 1.定义一个HashMap<String,SocketChannel>用户存储每个用户的管道. 2.服务端监听read事件,获取消息后轮询hashmap发送消息给用户模型内的所有 ...