题目链接:https://vjudge.net/problem/UVA-1401

题目:

Neal is very curious about combinatorial problems, and now here comes a problem about words. Knowing that Ray has a photographic memory and this may not trouble him, Neal gives it to Jiejie. Since Jiejie can’t remember numbers clearly, he just uses sticks to help himself. Allowing for Jiejie’s only 20071027 sticks, he can only record the remainders of the numbers divided by total amount of sticks. The problem is as follows: a word needs to be divided into small pieces in such a way that each piece is from some given set of words. Given a word and the set of words, Jiejie should calculate the number of ways the given word can be divided, using the words in the set.

Input

The input file contains multiple test cases. For each test case: the first line contains the given word whose length is no more than 300 000.

The second line contains an integer S, 1 ≤ S ≤ 4000. Each of the following S lines contains one word from the set. Each word will be at most 100 characters long. There will be no two identical words and all letters in the words will be lowercase. There is a blank line between consecutive test cases. You should proceed to the end of file.

Output

For each test case, output the number, as described above, from the task description modulo 20071027.

Sample Input

abcd

4

a

b

cd

ab

Sample Output

Case 1: 2

题意:
多组输入,首先给你一个长度最大为3e5的字符串s
然后给你一个整数n,后面给你n个长度最大为100的字符串str[i]
问你使用str组成s字符串有多少种方式

这里讲解一下样例:
abcd
4
a
b
cd
ab

那么abcd可以通过a+b+cd 或者 ab+cd 两种方式构成

题解:
dp方程很容易找到
dp[i]=(dp[i]+dp[j]) (i<j)
dp[i]表示构成s字符串的[i,len](这里我们把s字符串下标看作从1开始)这一个子串有多少种方式
那么我们就是需要找到有多少个j可以满足i的需求,因为如果dp[i]+=dp[j],那么s的子串[i,j-1]就需要是str字符串
中的一个才可以

那么暴力判断的话肯定就会TLE,这个时候我们使用字典树来维护
字典树建树的复杂度是O(n),n就是所有字符串的长度,在这里就是所有str字符串的长度,大致建树复杂度就是O(1e5)
另外在字典树上查找满足要求的j的时候,因为str最长为100,所以查找的复杂度最大也是100
那么所有复杂度就是O(1e5)+O(1e5*1e2)

代码:

/*
题意:
多组输入,首先给你一个长度最大为3e5的字符串s
然后给你一个整数n,后面给你n个长度最大为100的字符串str[i]
问你使用str组成s字符串有多少种方式 这里讲解一下样例:
abcd
4
a
b
cd
ab 那么abcd可以通过a+b+cd 或者 ab+cd 两种方式构成 题解:
dp方程很容易找到
dp[i]=(dp[i]+dp[j]) (i<j)
dp[i]表示构成s字符串的[i,len](这里我们把s字符串下标看作从1开始)这一个子串有多少种方式
那么我们就是需要找到有多少个j可以满足i的需求,因为如果dp[i]+=dp[j],那么s的子串[i,j-1]就需要是str字符串
中的一个才可以 那么暴力判断的话肯定就会TLE,这个时候我们使用字典树来维护
字典树建树的复杂度是O(n),n就是所有字符串的长度,在这里就是所有str字符串的长度,大致建树复杂度就是O(1e5)
另外在字典树上查找满足要求的j的时候,因为str最长为100,所以查找的复杂度最大也是100
那么所有复杂度就是O(1e5)+O(1e5*1e2) */ #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=3e5+10;
const int mod=20071027;
typedef struct Trie* TrieNode;
int dp[maxn],flag;
struct Trie
{
int sum;
TrieNode next[30];
Trie()
{
sum=0;
memset(next,NULL,sizeof(next));
}
};
void inserts(TrieNode root,char s[105])
{
TrieNode p = root;
int len=strlen(s);
for(int i=0; i<len; ++i)
{
int temp=s[i]-'a';
if(p->next[temp]==NULL) p->next[temp]=new struct Trie();
p=p->next[temp];
}
p->sum+=1;
}
void Del(TrieNode root)
{
for(int i=0 ; i<2 ; ++i)
{
if(root->next[i])Del(root->next[i]);
}
delete(root);
}
void query(TrieNode root,char s[105],int pos)
{
TrieNode p = root;
int len=strlen(s+1),ci=0;
for(int i=pos;i<=len;++i)
{
int temp=s[i]-'a';
if(p->next[temp]==NULL)
{
return;
}
else
{
p=p->next[temp];
}
ci++;
if(p->sum>0)
{
//printf("%d %d %d\n",pos,dp[pos],dp[pos+ci]);
dp[pos]+=dp[pos+ci];
dp[pos]%=mod;
}
}
}
char ss[maxn],str[105];
int main()
{
int n,p=0;
while(~scanf("%s",ss+1))
{
flag=0;
memset(dp,0,sizeof(dp));
TrieNode root = new struct Trie();
scanf("%d",&n);
for(int i=0 ; i<n; ++i)
{
scanf("%s",str);
inserts(root,str);
}
int len=strlen(ss+1);
dp[len+1]=1;
for(int i=len;i>=1;--i)
{
//printf("------------%d\n",i);
query(root,ss,i);
}
printf("Case %d: %d\n",++p,dp[1]);
Del(root);
}
return 0;
}

UVA1401 Remember the Word 字典树维护dp的更多相关文章

  1. Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)

    题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...

  2. codeforces Good bye 2016 E 线段树维护dp区间合并

    codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...

  3. Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp

    D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...

  4. UVALive 3942 Remember the Word 字典树+dp

    /** 题目:UVALive 3942 Remember the Word 链接:https://vjudge.net/problem/UVALive-3942 题意:给定一个字符串(长度最多3e5) ...

  5. UVALive 3942 Remember the Word(字典树+DP)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  6. 【HDU - 5845】Best Division(xor-trie、01字典树、dp)

    BUPT2017 wintertraining(15) #7E 题意 把数组A划分为k个区间,每个区间不超过L长度,每一个区间异或和之和为S.现在求:S不超过X,区间个数的最大值. 且A是这样给你的: ...

  7. Codeforces GYM 100114 D. Selection 线段树维护DP

    D. Selection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100114 Descriptio ...

  8. 【8.26校内测试】【重构树求直径】【BFS模拟】【线段树维护DP】

    题目性质比较显然,相同颜色联通块可以合并成一个点,重新建树后,发现相邻两个点的颜色一定是不一样的. 然后发现,对于一条链来说,每次把一个点反色,实际上使点数少了2个.如下图 而如果一条链上面有分支,也 ...

  9. 2019牛客暑期多校训练营(第二场)E 线段树维护dp转移矩阵

    题意 给一个\(n\times m\)的01矩阵,1代表有墙,否则没有,每一步可以从\(b[i][j]\)走到\(b[i+1][j]\),\(b[i][j-1]\),\(b[i][j+1]\),有两种 ...

随机推荐

  1. zabbix v3.0安装部署【转】

    关于zabbix及相关服务软件版本: Linux:oracle linux 6.5 nginx:1.9.15 MySQL:5.5.49 PHP:5.5.35 一.安装nginx: 安装依赖包: yum ...

  2. Eclipse-Che 安装(Centos)

    安装docker,然后执行:docker run -it --rm -v /var/run/docker.sock:/var/run/docker.sock -v /home/cheData:/dat ...

  3. LeetCode225 用队列实现栈

    使用队列实现栈的下列操作: push(x) -- 元素 x 入栈 pop() -- 移除栈顶元素 top() -- 获取栈顶元素 empty() -- 返回栈是否为空 注意: 你只能使用队列的基本操作 ...

  4. Java通过基姆拉尔森公式判断当前日期是不是工作日

    基姆拉尔森公式 算法如下: 基姆拉尔森计算公式 W= (d+2*m+3*(m+1)/5+y+y/4-y/100+y/400+1)%7 在公式中d表示日期中的日数,m表示月份数,y表示年数. 注意:在公 ...

  5. 【Vue】Vue框架常用知识点 Vue的模板语法、计算属性与侦听器、条件渲染、列表渲染、Class与Style绑定介绍与基本的用法

    Vue框架常用知识点 文章目录 Vue框架常用知识点 知识点解释 第一个vue应用 模板语法 计算属性与侦听器 条件渲染.列表渲染.Class与Style绑定 知识点解释 vue框架知识体系 [1]基 ...

  6. Windows+.Net Framework+svn+IIS在Jenkins上的自动化部署入门

    关于Jenkins的使用及安装,上一篇文章我已经介绍过了,Windows+.NetCore+git+IIS在Jenkins上的自动化部署入门.这篇主要是在jenkins如何安装SVN和MSBuild. ...

  7. C++:标准I/O流

    标准I/O对象:cin,cout,cerr,clog cout; //全局流对象 输出数据到显示器 cin; //cerr没有缓冲区 clog有缓冲区 cerr; //标准错误 输出数据到显示器 cl ...

  8. 一种获取context中keys和values的高效方法 | golang

    我们知道,在 golang 中的 context 是一个非常重要的包,保存了代码活动的上下文.我们经常使用 WithValue() 这个方法,来往 context 中 传递一些 key value 数 ...

  9. 使用EFCore连接Oracle数据库时出现的问题

    问题 System.TypeLoadException: Method 'Create' in type 'Oracle.EntityFrameworkCore.Infrastructure.Inte ...

  10. 提取当前文件夹下的所有文件名.bat(Windows批处理文件)

    @echo off dir /s/b *.* > 文件名.txt exit