概要:

推荐系统通过信息获取技术解决在线的个人的消息、产品或者服务的推荐问题。这些系统,特别是基于k临近协同过滤算法,在网络上取得了广泛的成功。可用信息和访问人数的巨大增加成了推荐系统一个难题。基于商品的协同过滤推荐算法应运而生,通过分析用户特征矩阵计算推荐信息。本文主要分析不同的基于商品的推荐算法,还会同k临近过滤算法比较,同时提供比现存最好的基于用户算法更好的算法。

一、协同过滤算法分类

协同过滤算法主要分为:1.基于存储 2.基于模型

基于存储:它利用整个用户商品数据来产生预测,使用静态的方法找到相似用户,他们评价了不同的商品但是评价相似或者他们想买相似的商品,一旦形成相似组群,系统就会整合组群来产生预测。这种方法也被叫做临近算法或者基于用户的协同过滤算法,得到广泛的应用。

面临的问题:

1.稀疏问题:商品很多,即使是非常爱买东西的用户买的物品可能都不会超过总商品的1%。

2.性能:计算量随着用户和商品的增加而增加。因此数据量一大性能就降低。 

基于模型:它通过产生一个用户评分模型来推荐,这个算法采用了概率论的方法,通过用户给出的期望价值来给其他商品打分,这个模型通过机器学习算法比如贝叶斯网络, clustering, 和 rule-based等等实现的。贝叶斯网络模型为协同过滤算法提供了一个概率模型,Clustering模型把协同过滤算法当成一个分类问题,通过将相似者分组然后估计该客户在这个类别的可能性,通过这些来计算商品评分的可能性。rule-based通过共同购买的商品的相关度来产生基于商品相关度的推荐。

二、协同过滤算法用到的度量技术

商品相似度:

1.cosine相似度:只考虑item向量的点积

2.correlation-based相似度(Pearson相似度):考虑了item的平均评分

3.adjusted cosine相似度:考虑了用户对item的平均评分

预测计算:

1.使用相似度加权平均

2.使用回归模型。使用加权平均时,采用的与预测物品i相似的物品 j的相似度Sim j* j的评分Rj。而使用回归模型时,它会计算出一个线性回归 f(j) =α*avg(Rj) + β + ξ,从而计算出一个不同于Rj的分值,然后再使用加权平均。

评价系统好坏的方式:

1.statistical accuracy metrics:MOE、RMSE

2.decision support accuracy metrics:reversal rate, weighted errors, ROC

三、结论

1.基于物品的算法预测结果要比基于用户的算法预测结果好

2.基本的基于物品的算法,模型大小越大,推荐质量越好,但是基于回归的物品算法,先是随着模型大小增加而增加,之后质量下降。

3.adjusted cosine similarity效果比较好

阅读笔记:Item-based Collaborative Filtering Recommendation Algorithms的更多相关文章

  1. 基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms” .

    ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based ...

  2. 论文笔记 : NCF( Neural Collaborative Filtering)

    ABSTRACT 主要点为用MLP来替换传统CF算法中的内积操作来表示用户和物品之间的交互关系. INTRODUCTION NeuCF设计了一个基于神经网络结构的CF模型.文章使用的数据为隐式数据,想 ...

  3. Collaborative filtering

        Collaborative filtering, 即协同过滤,是一种新颖的技术.最早于1989年就提出来了,直到21世纪才得到产业性的应用.应用上的代表在国外有Amazon.com,Last. ...

  4. 个性探测综述阅读笔记——Recent trends in deep learning based personality detection

    目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...

  5. 《Learning to warm up cold Item Embeddings for Cold-start Recommendation with Meta Scaling and Shifting Networks》论文阅读

    <Learning to warm up cold Item Embeddings for Cold-start Recommendation with Meta Scaling and Shi ...

  6. [转]-[携程]-A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems

    原文链接:推荐系统中基于深度学习的混合协同过滤模型 近些年,深度学习在语音识别.图像处理.自然语言处理等领域都取得了很大的突破与成就.相对来说,深度学习在推荐系统领域的研究与应用还处于早期阶段. 携程 ...

  7. 从item-base到svd再到rbm,多种Collaborative Filtering(协同过滤算法)从原理到实现

    http://blog.csdn.net/dark_scope/article/details/17228643 〇.说明 本文的所有代码均可在 DML 找到,欢迎点星星. 一.引入 推荐系统(主要是 ...

  8. CI框架源码阅读笔记3 全局函数Common.php

    从本篇开始,将深入CI框架的内部,一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说,全局函数具有最高的加载优先权,因此大多数的框架中BootStrap ...

  9. Mongodb Manual阅读笔记:CH7 索引

    7索引 Mongodb Manual阅读笔记:CH2 Mongodb CRUD 操作Mongodb Manual阅读笔记:CH3 数据模型(Data Models)Mongodb Manual阅读笔记 ...

随机推荐

  1. 搭乘“AI大数据”快车,肌肤管家,助力美业数字化发展

    经过疫情的发酵,加速推动各行各业进入数据时代的步伐.美业,一个通过自身技术.产品让用户变美的行业,在AI大数据的加持下表现尤为突出. 对于美妆护肤企业来说,一边是进入存量市场,一边是疫后的复苏期,一边 ...

  2. ReentrantLock-源码解析

    ReentrantLock类注释 1.可重入互斥锁,意思是表示该锁能够支持一个线程对资源的重复加锁,该锁还支持获取锁的公平和非公平性选择.synchronized关键字隐式的支持重进入. 2.可以通过 ...

  3. 四:WEB源码扩展

    前言:WEB源码在安全测试中是非常重要的信息来源,可以用来进行代码审计漏洞也可以用来做信息突破口,其中WEB源码有很多技术需要简明分析,获取某ASP源码后就可以采用默认数据库下载为突破,获取某其他脚本 ...

  4. Java基础学习总结笔记

    Java基础 Java常用内存区域 栈内存空间:存储引用堆内存空间的地址 堆内存空间:保存每个对象的具体属性内容 全局数据区:保存static类型的属性 全局代码区:保存所有的方法定义 修饰符 权限修 ...

  5. 【Linux】CentOS4 系统最后的网络yum源

    ------------------------------------------------------------------------------------------------- | ...

  6. 【Linux】大于2T的磁盘怎么分区?

    环境CentOS7.1 2.9t磁盘 fdisk 只能分区小于2t的磁盘,大于2t的话,就要用到parted 1,将磁盘上原有的分区删除掉: 进入:#parted   /dev/sdb 查看:(par ...

  7. 19.java设计模式之备忘录模式

    基本需求 游戏的角色有攻击力和防御力,在大战Boss之前保存自身的状态(攻击力和防御力),当大战Boss之后攻击力和防御力下降,从备忘录对象恢复到大战前的状态 传统方案 一个对象,就对应一个保存对象状 ...

  8. C语言------三目运算符(条件运算符)

    今天在看C语言的时候看到了下面的代码(废话少说,直接上代码): #include <stdio.h> int main() {int max(); extern int A,B,C; // ...

  9. 【葵花宝典】All-in-One模式安装KubeSphere

    1.准备 Linux 机器 2.google api受限下载 KubeKey export KKZONE=cn curl -sfL https://get-kk.kubesphere.io | VER ...

  10. linux下安装nacos

    一.安装 1.下载安装包: https://github.com/alibaba/nacos/releases 2.解压 : tar -xzvf nacos-server-1.2.1.tar.gz 3 ...