• 题意/题解:经典括号匹配题目,不多说了.

  • 代码:

    int t;
    int n;
    string s;
    int cnt; int main() {
    ios::sync_with_stdio(false);cin.tie(0);
    cin>>t;
    while(t--){
    cnt=0;
    int ans=0;
    cin>>n>>s;
    for(int i=0;i<n;++i){
    if(s[i]=='('){
    cnt++;
    }
    else{
    if(cnt>0) cnt--;
    else ans++;
    }
    }
    cout<<ans<<endl;
    } return 0;
    }

Codeforces Round #653 (Div. 3) C. Move Brackets的更多相关文章

  1. Codeforces Round #653 (Div. 3)

    比赛链接:https://codeforces.com/contest/1374 A. Required Remainder 题意 给出 $x, y, n$,找到最大的整数 $0 \le k \le ...

  2. Codeforces Round #106 (Div. 2) D. Coloring Brackets 区间dp

    题目链接: http://codeforces.com/problemset/problem/149/D D. Coloring Brackets time limit per test2 secon ...

  3. Codeforces Round #106 (Div. 2) D. Coloring Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/CodeForces-149D D. Coloring Brackets time limit per test 2 seconds m ...

  4. Codeforces Round #653 (Div. 3) E1. Reading Books (easy version) (贪心,模拟)

    题意:有\(n\)本书,A和B都至少要从喜欢的书里面读\(k\)本书,如果一本书两人都喜欢的话,那么他们就可以一起读来节省时间,问最少多长时间两人都能够读完\(k\)本书. 题解:我们可以分\(3\) ...

  5. Codeforces Round #653 (Div. 3) D. Zero Remainder Array (数学,模拟)

    题意:有一组数,刚开始时\(x=0\),每次可以让\(x\)++或让某一个元素+=\(x\)后\(x\)++,每个元素只能加一次\(x\),问最少操作多少次使得所有元素能被\(k\)整除. 题解:每个 ...

  6. Codeforces Round #653 (Div. 3) B. Multiply by 2, divide by 6 (数学)

    题意:有一个数\(n\),每次操作可以使\(n*=2\)或\(n/=6\)(如果能被整除),求最少操作次数使得\(n=1\),如果不满足,输出\(-1\). 题解:我们只要看\(n\)的质因子即可,如 ...

  7. Codeforces Round #653 (Div. 3) A. Required Remainder (数学)

    题意:有三个正整数\(x,y,n\),再\(1\)~\(n\)中找一个最大的数\(k\),使得\(k\ mod\ x=y\). 题解:先记\(tmp=n/x\),再判断\(tmp*x+y\)的值是否大 ...

  8. Codeforces Round #372 (Div. 2)

    Codeforces Round #372 (Div. 2) C. Plus and Square Root 题意 一个游戏中,有一个数字\(x\),当前游戏等级为\(k\),有两种操作: '+'按钮 ...

  9. Codeforces Round #223 (Div. 2) A

    A. Sereja and Dima time limit per test 1 second memory limit per test 256 megabytes input standard i ...

随机推荐

  1. 使用 C# 9 的records作为强类型ID - 路由和查询参数

    上一篇文章,我介绍了使用 C# 9 的record类型作为强类型id,非常简洁 public record ProductId(int Value); 但是在强类型id真正可用之前,还有一些问题需要解 ...

  2. 剑指 Offer 27. 二叉树的镜像

    同LeetCode226翻转二叉树 1 class Solution { 2 public: 3 TreeNode* mirrorTree(TreeNode* root) { 4 if(root == ...

  3. AWD生存之道

    比赛开始阶段 常见漏洞的防御手段:https://www.freebuf.com/articles/web/208778.html 一.登陆SSH 重点 如果ssh的密码不是随机密码,记得一开始就进行 ...

  4. 分布式系统:xxl-job改造spring-cloud

    目录 改造原因 主要改造思路 调度中心 调度中心 执行器侧 总结 修改后的源码仓库地址:GitHub. : 改造原因 原有的xxl-job使用自己实现的http协议进行注册以及调度等,与目前框架中本身 ...

  5. druid discard long time none received connection问题解析

    最新项目中用的druid连接数据库遇到一个困扰很久的问题 1 开始用的druid版本是1.1.22版本,由于业务需求,单个连接需要执行很久,理论上不需要用到自动回收,但为了安全,还是加了自动回收,时间 ...

  6. Redis 实战 —— 02. Redis 简单实践 - 文章投票

    需求 功能: P15 发布文章 获取文章 文章分组 投支持票 数值及限制条件 P15 如果一篇文章获得了至少 200 张支持票,那么这篇文章就是一篇有趣的文章 如果这个网站每天有 50 篇有趣的文章, ...

  7. SpringBoot 好“吃”的启动原理

    原创:西狩 编写日期 / 修订日期:2020-12-30 / 2020-12-30 版权声明:本文为博主原创文章,遵循 CC BY-SA-4.0 版权协议,转载请附上原文出处链接和本声明. 不正经的前 ...

  8. 安装OpenDaylight及Openflow插件

    1. 安装 Java 和 Maven CentOS7: yum install java-1.8.0-openjdk.x86_64 java-1.8.0-openjdk-devel.x86_64 ma ...

  9. Arduino 上手实战呼吸灯

    前言 这篇稿子比以往的时候来的稍晚了一些,望fans们见谅,那即便如此,最终还是姗姗来迟了,公司新一轮战略性部署,被拖出去孵化新产品,开拓新市场去了,手头精力没有那么多了,另外产品一茬接一茬.韭菜一波 ...

  10. ip_hash(不推荐使用) 会话粘性问题分析 Cookie 的 Session Sticky

    Nignx 连接tomcat时会话粘性问题分析_changyanmanman的专栏-CSDN博客_后端tomcat导致 前端elb中断 https://blog.csdn.net/cymm_liu/a ...