Codeforces Round #295 (Div. 2) B. Two Buttons (DP)
题意:有两个正整数\(n\)和\(m\),每次操作可以使\(n*=2\)或者\(n-=1\),问最少操作多少次使得\(n=m\).
题解:首先,若\(n\ge m\),直接输出\(n-m\),若\(2*n>=m\),分\(m\)的奇偶判断一下,如果是奇数就输出\(n-(m+1)/2+2\),是偶数就输出\(n-m/2+1\).否则我们就需要用dp来求解,因为是求最小值,所以先初始化将所有值设为\(INF\),\(dp[i]\)表示从\(n\)到\(m\)的操作次数最少的最优解,首先需要更新\([1,n]\)的状态,这个不难写,\(dp[i]=dp[i+1]+1\),然后我们就可以从\(1\)开始枚举到\(m\),而我们当前的状态\(dp[i]\)可以更新后面的状态\(dp[i*2]\),这步应该不难想,这儿的难点是我们需要更新一些奇数的状态,比如\(n=2\),我们刚开始可以更新\(dp[4]\),然后到\(n=3\)的时候发现\(3\)只能通过\(4\)更新得到,而\(dp[4]\)由\(dp[2]\)更新过了,所以我们可以通过\(dp[4]\)来更新\(dp[3]\),于是每次遍历我们更新两个状态,一个是自己的状态\(dp[i]=min(dp[i],dp[i+1]+1)\),一个是后面的数的状态\(dp[i*2]=min(dp[i*2],dp[i]+1)\).
代码:
int n,m;
int dp[N]; int main() {
//ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
n=read(),m=read(); if(n>=m){
printf("%d\n",n-m);
return 0;
} if(m<=2*n){
if(m&1){
int cnt=(m+1)/2;
printf("%d\n",n-cnt+2);
}
else printf("%d\n",n-m/2+1);
return 0;
}
me(dp,INF,sizeof(dp));
dp[n]=0;
for(int i=n-1;i>=1;--i) dp[i]=dp[i+1]+1; for(int i=1;i<=m;++i){
dp[i]=min(dp[i],dp[i+1]+1);
dp[i*2]=min(dp[i*2],dp[i]+1);
} printf("%d\n",dp[m]); return 0;
}
Codeforces Round #295 (Div. 2) B. Two Buttons (DP)的更多相关文章
- Codeforces Round #295 (Div. 2)B - Two Buttons BFS
B. Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- Codeforces Round #295 (Div. 2)---B. Two Buttons( bfs步数搜索记忆 )
B. Two Buttons time limit per test : 2 seconds memory limit per test :256 megabytes input :standard ...
- Codeforces Round #295 (Div. 2) B. Two Buttons
B. Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- Codeforces Round #295 (Div. 2) B. Two Buttons 520B
B. Two Buttons time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- 【记忆化搜索】Codeforces Round #295 (Div. 2) B - Two Buttons
题意:给你一个数字n,有两种操作:减1或乘2,问最多经过几次操作能变成m: 随后发篇随笔普及下memset函数的初始化问题.自己也是涨了好多姿势. 代码 #include<iostream> ...
- Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)
题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...
- Codeforces Round #295 (Div. 2)
水 A. Pangram /* 水题 */ #include <cstdio> #include <iostream> #include <algorithm> # ...
- codeforces 521a//DNA Alignment// Codeforces Round #295(Div. 1)
题意:如题定义的函数,取最大值的数量有多少? 结论只猜对了一半. 首先,如果只有一个元素结果肯定是1.否则.s串中元素数量分别记为a,t,c,g.设另一个串t中数量为a',t',c',g'.那么,固定 ...
- Codeforces Round #295 (Div. 2)C - DNA Alignment 数学题
C. DNA Alignment time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
随机推荐
- Electron小白入门自学笔记(一)
码文不易啊,转载请带上本文链接呀,感谢感谢 https://www.cnblogs.com/echoyya/p/14297176.html 一.从Hello Electron开始 创建一个空的文件夹, ...
- Goby资产扫描工具安装及报错处理
官网: https://cn.gobies.org/index.html 产品介绍: 帮企业梳理资产暴露攻击面,新一代网络安全技术,通过为目标建立完整的资产数据库,实现快速的安全应急. 已有功能: 扫 ...
- ABAP 多表联合查询
inner join(等值连接) 只返回两个表中联结字段相等的行left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录right join(右联接) 返回包括右表中的所有记录 ...
- Python赋值、浅复制和深复制
Python赋值.浅复制和深复制 首先我们需要知道赋值和浅复制的区别: 赋值和浅复制的区别 赋值,当一个对象赋值给另一个新的变量时,赋的其实是该对象在栈中的地址,该地址指向堆中的数据.即赋值后,两 ...
- git的使用学习笔记4--创建分支
1.在git上新建分支 查看本地分支 git branch 查看远程分支 git branch -a 创建一个分支 git checkout -b branch1 再次查看远程分支可以看到该分支 2. ...
- 任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行
任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行 多线程 - 廖雪峰的官方网站 https://www.liaoxuefeng ...
- https://www.hutool.cn/ 糊涂
一个Java基础工具类,对文件.流.加密解密.转码.正则.线程.XML等JDK方法进行封装,组成各种Util工具类,同时提供以下组件: 模块 介绍 hutool-aop JDK动态代理封装,提供非IO ...
- 数据备份与恢复 半持久化 全持久化 fork aof rdb Backing up Disaster recovery 备份 容灾
Redis数据备份与恢复 - 流年晕开时光 - 博客园 https://www.cnblogs.com/deny/p/11531355.html Redis数据备份与恢复 Redis所有数据都是保存在 ...
- 使用Robo 3T操作MongoDB数据库
安装Robo 3T连接MongoDB数据库教程:https://blog.csdn.net/baidu_39298625/article/details/98845789 在IDEA中用三个jar包链 ...
- luogu p2622
题目描述 现有n盏灯,以及m个按钮.每个按钮可以同时控制这n盏灯--按下了第i个按钮,对于所有的灯都有一个效果.按下i按钮对于第j盏灯,是下面3中效果之一:如果a[i][j]为1,那么当这盏灯开了的时 ...