题目

Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer number is beautiful if and only if it is divisible by each of its nonzero digits. We will not argue with this and just count the quantity of beautiful numbers in given ranges.

Volodya是个奇怪的男孩,他的品味也很奇怪。 在他看来,当且仅当正整数可以被其每个非零数字整除时,它才是Beautiful的。 我们不会对此争论,而只计算给定范围内的 Beautiful number的数量。

输入格式

The first line of the input contains the number of cases $ t (1 \le t \le 10)$. Each of the next t lines contains two natural numbers \(l_i\) and \(r_i (1 \le li \le ri \le 9 \times 10^{18})\).

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).

输入的第一行包含数据组数\(t(1 \le t \le 10)\), 接下来的t行中的每行包含两个自然数$l_i \(和\)r_i(1 \le l_i \le r_i \le 9 \times 10 ^ {18})$.

请不要使用%lld在C ++中读取或写入64位整数。 建议使用cin(也可以使用%l64d).

输出格式

Output should contain tt numbers — answers to the queries, one number per line — quantities of beautiful numbers in given intervals (from \(l_{i}\) to \(r_i\), inclusively).

t行,每行输出从\(l_{i}\) 到 \(r_i\)的Beautiful number的数量

题解

这道题是数位DP我好像没学过啊,而且还是黑题...最开始真是一点思路都没有,后来看了dalao们的题解才能写出来.

这道题让求一段范围内的,比较容易想到的就是差分,求出\(1\)到\(r\)的数量,再求出\(1\)到\(l-1\)的数量,相减即可.

注意每位数都是\(1-9\),他们的最小公倍数是\(2520\),所以如果一个数可以整除\(2520\),就一定可以整除\(1-9\).

设\(dp[i][j][k]\),\(i\)表示还剩下多少位数要规划,这前\(i\)位数模\(2520\)的余数是\(j\),这前\(i\)位数的最小公倍数是\(k\).

如果最后的数能整除\(k\),那么它一定能整除它各位数字的最小公倍数

有可能出现的\(k\)都是\(2520\)的因数,所以将\(j\)取模\(2520\),若所得的结果整除\(k\),那么原来的数也一定整除\(k\).

所以就可以得到状态转移方程

\(dp[i][j][k]= \Sigma_{x=1}^{x_{max}} \ \ \ \ dp[i−1][(j \times 10+x) \% 2520][lcm(k,x)]\)

\(lcm(a,b)\)表示\(a\)和\(b\)的最小公倍数

但是如果开这么大的数组,会MLE,所以需要继续优化,注意第三维是\(lcm(k,x)\),是从\(1-9\)之间取数字做\(lcm\)运算,得到的结果数量远远少于\(2520\),所以与处理一下做一个离散化即可.

希望有一天能自己独立写出黑题.

代码

#include <bits/stdc++.h>
using namespace std;
int number[20], mp[2521], cnt;
long long dp[20][2521][50],l, r, t;
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }
long long dfs(int length, int pre, int mod, bool limit ,long long ans = 0) {
if (!length) return pre % mod == 0;
if (!limit && dp[length][pre][mp[mod]] != -1) return dp[length][pre][mp[mod]];
int ed = limit ? number[length] : 9;
for (int i = 0; i <= ed; i++)
ans += dfs(length - 1, (pre * 10 + i) % 2520, i == 0 ? mod : mod * i / gcd(mod, i), limit && i == ed);
if (!limit) dp[length][pre][mp[mod]] = ans;
return ans;
}
long long solve(long long n, int length = 0) {
while (n) number[++length] = n % 10, n /= 10;
return dfs(length, 0, 1, 1);
}
int main() {
memset(dp, -1, sizeof(dp));
for (int i = 1; i <= 2520; i++)
if (!(2520 % i)) mp[i] = ++cnt;
cin >> t;
while (t--) {
cin >> l >> r;
cout << solve(r) - solve(l - 1) << endl;
}
return 0;
}

代码如有雷同,不是巧合

CF55D Beautiful numbers 题解的更多相关文章

  1. 洛谷 CF55D Beautiful numbers 解题报告

    CF55D Beautiful numbers 题意 \(t(\le 10)\)次询问区间\([l,r](1\le l\le r\le 9\times 10^{18})\)中能被每一位上数整除的数的个 ...

  2. [暑假集训--数位dp]cf55D Beautiful numbers

    Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer numb ...

  3. CF55D Beautiful numbers

    题目链接 题意 定义一个数字\(x\)是\(beautiful\ number\)当且仅当\(x\)可以被其十进制表示下所有非\(0\)位置的数整除. 例如\(24\)是一个\(beautiful\ ...

  4. CF55D Beautiful numbers (数位dp)

    题目链接 题解 一个数能被一些数整除,那么一定被这些数的\(lcm\)整除 那么我们容易想到根据\(lcm\)设状态 我们可以发现有用的\(lcm\)只有\(48\)个 那么按照一般的数位\(dp\) ...

  5. CF1265B Beautiful Numbers 题解

    Content 给定一个 \(1\sim n\) 的排列,请求出对于 \(1\leqslant m\leqslant n\),是否存在一个区间满足这个区间是一个 \(1\sim m\) 的排列. 数据 ...

  6. cf55D. Beautiful numbers(数位dp)

    题意 题目链接 Sol 看到这种题就不难想到是数位dp了. 一个很显然的性质是一个数若能整除所有位数上的数,则一定能整除他们的lcm. 根据这个条件我们不难看出我们只需要记录每个数对所有数的lcm(也 ...

  7. 【数位DP】CF55D Beautiful numbers

    $dp[x][p][pp]$表示第x位,当前已有数字mod 2520(1~9数字的lcm)为p,当前各位数字的lcm为pp 观察到数组太大,考虑压缩,第三维lcm最多只有9个数字,打表发现最多只有48 ...

  8. 【CF55D】Beautiful numbers(动态规划)

    [CF55D]Beautiful numbers(动态规划) 题面 洛谷 CF 题解 数位\(dp\) 如果当前数能够被它所有数位整除,意味着它能够被所有数位的\(lcm\)整除. 所以\(dp\)的 ...

  9. 【CF55D】Beautiful numbers

    [CF55D]Beautiful numbers 题面 洛谷 题解 考虑到如果一个数整除所有数那么可以整除他们的\(lcm\),而如果数\(x\)满足\(x\bmod Lcm(1,2...,9)=r\ ...

随机推荐

  1. ArrayDeque使用&实现原理分析

    ArrayDeque使用&实现原理分析 学习Okhttp实现源码时,发现其任务分发时用到了ArrayDeque.因此了解一下ArrayDeque的使用方式和实现原理. 一.Deque dequ ...

  2. pi-star镜像 下载地址

    Pi-Star_NanoPi_Air_V3.4.17_09-Jan-2019.zip nanopi air点这里  Pi-Star_NanoPi_V3.4.17_09-Jan-2019.zip nan ...

  3. 【leetCode】485. 最大连续1的个数

    给定一个二进制数组, 计算其中最大连续1的个数. 示例 1: 输入: [1,1,0,1,1,1]输出: 3解释: 开头的两位和最后的三位都是连续1,所以最大连续1的个数是 3.注意: 输入的数组只包含 ...

  4. php使用json_encode中遇见问题?

    注:php版本5.4下,不支持json_encode对中文的处理,要么升级php版本. json_encode($value,$options) 其中有2个比较常用到的参数: 1.JSON_UNESC ...

  5. Quartz.Net系列(二):介绍、简单使用、对比Windows计划任务

    1.介绍 Quartz是功能强大的开源作业调度库,几乎可以集成到任何Java应用程序中-从最小的独立应用程序到最大的电子商务系统.Quartz可用于创建简单或复杂的计划,以执行数以万计,数以万计的工作 ...

  6. CentOS7.5搭建Hive2.3.3

    一 Hive的下载 软件下载地址:https://mirrors.tuna.tsinghua.edu.cn/apache/hive/  这里下载的版本是:apache-hive-2.3.3-bin.t ...

  7. GitHub如何回滚代码?

    1.git log 查看commit hash值 执行git log:查看commit hash值. 2.执行git reset --hard xxxx xxxx表示的是commit hash 值. ...

  8. #Linux 下 Xampp的安装与Hello World

    一.下载安装 去官网下载 移动下载完毕的xampp-linux-x64-7.4.6-0-installer.run 到/usr/local/jayce-softwares/xampp目录下(jayce ...

  9. 剑指 Offer 09. 用两个栈实现队列

    剑指 Offer 09. 用两个栈实现队列 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的 ...

  10. 算法题解:最小的K个数(海量数据Top K问题)

    [本文版权归微信公众号"代码艺术"(ID:onblog)所有,若是转载请务必保留本段原创声明,违者必究.若是文章有不足之处,欢迎关注微信公众号私信与我进行交流!] 题目 输入 n ...