拉格朗日乘子法

\[min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_3 = 2
\]
\[min \quad f = 2x_1^2+3x_2^2+7x_3^2 +\alpha _1(2x_1+x_2- 1)+\alpha _2(2x_2+3x_3 - 2)
\]
\[\dfrac{\partial f}{\partial x_1}=4x_1+2\alpha_1=0\Rightarrow x_1=-0.5\alpha_1 \\ \dfrac{\partial f}{\partial x_2}=6x_2+\alpha_1+2\alpha_2=0\Rightarrow x_2=-\dfrac{\alpha_1+2\alpha_2}{6} \\ \dfrac{\partial f}{\partial x_3}=14x_3+3\alpha_2=0\Rightarrow x_3=-\dfrac{3\alpha_2}{14}
\]

KKT条件

\[min \quad f = x_1^2-2x_1+1+x_2^2+4x_2+4 \\s.t. \quad x_1+10x_2 > 10 \\ \quad \quad \quad 10 x_1-10x_2 < 10
\]
\[s.t. \quad 10-x_1-10x_2 <0 \\ \quad \quad \quad 10x_1-x_2 - 10<0
\]
\[L(x,\alpha) = f(x) + \alpha_1g1(x)+\alpha_2g2(x)\\ =x_1^2-2x_1+1+x_2^2+4x_2+4+ \alpha_1(10-x_1-10x_2 ) +\\\alpha_2(10x_1-x_2 - 10)
\]

\[L(x,\alpha,\beta) = f(x) + \sum\alpha_ih_i(x)+\sum\beta_ig_i(x)
\]

(1) L对各个x求导为零;

(2) h(x)=0;

(3) \( \beta_ig_i(x)=0 \)

\[min \quad f = x_1^2-2x_1+1+x_2^2+4x_2+4 \\s.t. \quad 10-x_1-10x_2 <0 \\ \quad \quad \quad 10x_1-x_2 - 10<0
\]
\[L(x,\alpha)= x_1^2-2x_1+1+x_2^2+4x_2+4+\\\alpha_1(10-x_1-10x_2)+\alpha_2(10x_1-x_2 - 10)
\]
\[\dfrac{\partial L}{\partial x_1}=2x_1-2-\alpha_1+10\alpha_2=0\Rightarrow x_1=0.5(\alpha_1-10\alpha_2+2) \\ \dfrac{\partial L}{\partial x_2}=2x_2+4-10\alpha_1-\alpha_2=0\Rightarrow x_2=0.5(10\alpha_1+\alpha_2-4)
\]
\[\alpha_1*g_1(x)=\alpha_1*(10-x_1-10x_2)=0\\\alpha_2*g_2(x)=\alpha_2*(10x_1-x_2 - 10)=0
\]
\[α1=58/101,α2=4/101
\]
\[x1=110/101=1.08;x2=90/101=0.89
\]

拉格朗日乘子法与KKT条件的更多相关文章

  1. 拉格朗日乘子法与KKT条件 && SVM中为什么要用对偶问题

    参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原 ...

  2. 关于拉格朗日乘子法与KKT条件

    关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉 ...

  3. 【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法

    目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其 ...

  4. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  5. 装载:关于拉格朗日乘子法与KKT条件

    作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助. ...

  6. 约束优化方法之拉格朗日乘子法与KKT条件

    引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT ...

  7. 【365】拉格朗日乘子法与KKT条件说明

    参考:知乎回答 - 通过山头形象描述 参考:马同学 - 如何理解拉格朗日乘子法? 参考: 马同学 - 如何理解拉格朗日乘子法和KKT条件? 参考:拉格朗日乘数 - Wikipedia 自己总结的规律 ...

  8. 拉格朗日乘子法以及KKT条件

    拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题.他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题. 其中,利用拉格朗日乘子法 ...

  9. 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题

    1 前言 拉格朗日乘子法(Lagrange Multiplier)  和 KKT(Karush-Kuhn-Tucker)  条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...

随机推荐

  1. Salesforce LWC学习(二十四) Array.sort 浅谈

    本篇参考:https://developer.mozilla.org/zh-CN/docs/Web/JavaScript/Reference/Global_Objects/Array/sort sal ...

  2. Java面试题(1):详解int与Integer

    Java面试题(1):详解int与Integer int与Integer的区别 int是Java的基本数据类型之一,Integer是int的包装类 int直接再内存中储存值,Integer进行new操 ...

  3. 浅析vue的两项原理

    一.vue双向绑定原理 Vue.js-作者为中国人尤雨溪 vue实现数据双向绑定主要是:采用数据劫持结合发布者-订阅者模式的方式,通过Object.defineProperty()来劫持各个属性的se ...

  4. 给MySQL中数据表添加字段

    添加一个char字段: mysql> alter table stock add src char(20); Query OK, 3766 rows affected (0.65 sec) Re ...

  5. Spring Boot入门,源码解析

    目录 1.Spring Boot简介 2.微服务 3.Spring Boot HelloWorld 3.1 创建一个Maven工程 3.2 导入依赖Spring Boot相关的依赖 3.3 编写一个主 ...

  6. Cutting Game(POJ 2311)

    原题如下: Cutting Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5721   Accepted: 208 ...

  7. python3和python2语法区别

    1.print python2中是print xxx python3中是print(xxx) 2.抛异常except python2中except Exception,e: print "E ...

  8. 吴恩达《深度学习》-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-第一周:深度学习的实践层面 (Practical aspects of Deep Learning) -课程笔记

    第一周:深度学习的实践层面 (Practical aspects of Deep Learning) 1.1 训练,验证,测试集(Train / Dev / Test sets) 创建新应用的过程中, ...

  9. 常用的CSS命名规范大总结

    转载: http://www.php.cn/toutiao-417563.html 文本命名规范 index.css: 一般用于首页建立样式 head.css: 头部样式,当多个页面头部设计风格相同时 ...

  10. outh2

    之前做天猫精灵对接,就碰到了outh鉴权,当时实现好之后没有细细缕,今天看了一个博主的介绍,贴一下 转载自http://www.ruanyifeng.com/blog/2014/05/oauth_2_ ...