Link

题目大意:给定序列,将它划分为\(m\)段使得方差最小,输出\(s^2*m^2\)(一个整数)。

\(\text{Solution:}\)

这题我通过题解中的大佬博客学到了一般化方差柿子的写法。

下面来推柿子:

\[s^2=\frac{\sum_{i=1}^n (x_i-\overline{x})^2}{n}=\frac{1}{n}(\sum_{i=1}^n x_i^2+n*(\frac{ \sum_{i=1}^n x_i}{n})^2-2\sum_{i=1}^n (x_i* \frac{\sum_{k=1}^n x_k}{n}))
\]
\[s^2=\frac{\sum_{i=1}^n x_i^2+\frac{(\sum_{i=1}^n x_i)^2}{n}-2 \frac{(\sum_{k=1}^n x_i)^2}{n}}{n}
\]

化简得到:

\[s^2=\frac{(x_1^2+...+x_n^2)-\frac{(\sum_{i=1}^n x_i)^2}{n}}{n}
\]

两边乘以\(n^2\)得到:

\[s^2n^2=n\sum_{i=1}^n x_i^2 -(\sum_{i=1}^n x_i)^2=n\sum_{i=1}^n x_i^2 -sum[n]^2
\]

其中\(sum\)是前缀和。最后这个柿子里面,\(n,sum\)都是常数,最终要处理的就是\(\sum_{i=1}^n x_i^2\).

设\(dp[i][l]\)表示前\(i\)个元素划分\(l\)次的最小平方和,有:

\[dp[i][l]=\min_{j<i}dp[j][l-1]+(sum[i]-sum[j])^2
\]
\[dp[i][l]=dp[j][l-1]+sum[i]^2+sum[j]^2-2sum[i]sum[j]
\]
\[dp[j][l-1]+sum[j]^2=2sum[i]sum[j]+dp[i][l]-sum[i]^2
\]
\[y=dp[j][l-1]+sum[j]^2,k=2sum[i],x=sum[j],b=dp[i][l]-sum[i]^2
\]

最终目的最小化\(dp[i][l]\)这里就是最小化\(b\),观察到\(2sum[i]\)这个斜率单调递增,所以我们维护所有大于这个斜率的决策点,做到\(O(n).\)

对于这个题,还可以滚动数组优化,虽然这里不需要。

几个实现细节:前\(i\)个元素可以划分成\(i\)段,所以每次枚举起点,它的决策起点应该是划分段数\(-1\),开始应该是划分段数对应的元素数。因为再往前往后都会导致不合法。

写\(\text{slope}\)的时候最好用\(\text{long double}\).顺序不要搞反。当然这个题主要难点是推方差柿子……\(\text{WCSL.}\)

#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m,a[20010],sum[20010];
int dp[4000][4000],tail,head;
int q[200010];
int X(int x){return sum[x];}
int Y(int x,int p){return dp[x][p-1]+sum[x]*sum[x];}
long double slope(int x,int y,int p){return (long double)(Y(y,p)-Y(x,p))/(X(y)-X(x));}
//dp[i][l]=dp[j][l-1]+(sum[i]-sum[j])^2
signed main(){
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;++i)scanf("%lld",&a[i]),sum[i]=sum[i-1]+a[i],dp[i][1]=sum[i]*sum[i];
for(int p=2;p<=m;p++){
head=tail=1;
q[head]=p-1;
for(int i=p;i<=n;++i){
while(head<tail&&slope(q[head],q[head+1],p)<2.0*sum[i])head++;
dp[i][p]=dp[q[head]][p-1]+(sum[i]-sum[q[head]])*(sum[i]-sum[q[head]]);
while(head<tail&&slope(q[tail-1],q[tail],p)>slope(q[tail-1],i,p))tail--;
q[++tail]=i;
}
}
printf("%lld\n",m*dp[n][m]-sum[n]*sum[n]);
return 0;
}

附上推柿子时\(\text{word}\)上的东西:

\(Dp[i][l]=dp[j][l-1]+(sum[i]-sum[j])^2\)

\(Dp[i]][l]=dp[j][l-1]+sum[i]^2+sum[j]^2-2sum[i]sum[j]\)

\(Dp[j][l-1]+sum[j]^2=2sum[i]sum[j]+dp[i][l]-sum[i]^2\)

\(Y=dp[j][l-1]+sum[j]^2,k=2sum[i],x=sum[j],b=dp[i][l]-sum[i]^2\)

最小化\(b\),即可

\(Ans=-sum[n]^2+m*dp[n][m]\)

【题解】[SDOI2016]征途的更多相关文章

  1. 题解-[SDOI2016]征途

    [SDOI2016]征途 [SDOI2016]征途 给定长度为 \(n\) 的序列 \(a\{n\}\),将其分为连续 \(m\) 段,和分别为 \(v\{m\}\).\(v\{m\}\) 的方差为 ...

  2. 斜率优化入门学习+总结 Apio2011特别行动队&Apio2014序列分割&HZOI2008玩具装箱&ZJOI2007仓库建设&小P的牧场&防御准备&Sdoi2016征途

    斜率优化: 额...这是篇7个题的题解... 首先说说斜率优化是个啥,额... f[i]=min(f[j]+xxxx(i,j)) ;   1<=j<i (O(n^2)暴力)这样一个式子,首 ...

  3. 【BZOJ4518】[Sdoi2016]征途 斜率优化

    [BZOJ4518][Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除 ...

  4. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  5. 动态规划(决策单调优化):BZOJ 4518 [Sdoi2016]征途

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 532  Solved: 337[Submit][Status][ ...

  6. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  7. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  8. BZOJ_4518_[Sdoi2016]征途_斜率优化

    BZOJ_4518_[Sdoi2016]征途_斜率优化 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到 ...

  9. luoguP4072 [SDOI2016]征途

    [SDOI2016]征途 大体 大概就是推推公式,发现很傻逼的\(n^3\)DP get60 进一步我们发现状态不能入手,考虑优化转移 套个斜率优化板子 每一层转移来一次斜率优化 思路 先便便式子 \ ...

  10. BZOJ4518 Sdoi2016 征途 【斜率优化DP】 *

    BZOJ4518 Sdoi2016 征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m ...

随机推荐

  1. Mc小冰总结的Android开发工程师面试题以及答案,android程序员必备,详解

    1.请谈一下Android系统的架构. 答:Android系统采用了分层架构,从高层到低层分别是应用程序层.应用程序框架层.系统运行库层和linux核心层. 2.谈谈android大众常用的五种布局. ...

  2. systemctl 如何启动、关闭、启用/禁用服务

    启动服务:systemctl start xxx.service 关闭服务:systemctl stop xxx.service 重启服务:systemctl restart xxx.service ...

  3. Google Code Jam 2020 Round1B Blindfolded Bullseye

    总结 这一题是道交互题,平时写的不多,没啥调试经验,GYM上遇到了少说交个十几发.一开始很快的想出了恰烂分的方法,但是没有着急写,果然很快就又把Test Set3的方法想到了,但是想到归想到,调了快一 ...

  4. Jemter响应数据乱码

    问题分析: 请求响应数据出现中文时,通过查看jemter的察看结果树中的响应数据信息,出现乱码.经过查看jemter的配置文件jmeter.properties发现其默认字符集编码为ISO-8859- ...

  5. Oracle WITH 语句 语法

    With语句可以在查询中做成一个临时表/View,用意是在接下来的SQL中重用,而不需再写一遍. With Clause方法的优点: 增加了SQL的易读性,如果构造了多个子查询,结构会更清晰. 示例: ...

  6. 返回boolean的mybatis查询

    注意:返回数量为0时函数返回值为false,返回数量为非零值时为true. Java函数: boolean hasSameServiceCode(@Param("oldDepotCd&quo ...

  7. sql如何查询不包含中文

    SELECT * FROM dbo.表名 WHERE 字段名 NOT LIKE '%[吖-座]%'

  8. JS语法_其他

    严格模式 let obj = { name: 'oceans', } function f1() { with (obj) { console.log(name) } } function f2() ...

  9. JavaScript 流程控制-分支

    JavaScript 流程控制-分支 1.流程控制 在一个程序执行的过程中,各条代码的执行顺序对程序的结果是有直接影响的,很多时候我们要通过控制代码的执行顺序来实现我们要完成的功能. 简单理解:流程控 ...

  10. vsCode 设置vue文件标签内的style智能提示

    VS Code 文件->首选项->设置 搜索:files.associations 点击在setting.json中编辑 最后一行添加配置: "files.association ...