定义

\(Prufer\) 数列是无根树的一种数列。

在组合数学中,\(Prufer\) 数列由有一个对于顶点标过号的树转化来的数列,点数为 \(n\) 的树转化来的 \(Prufer\) 数列长度为 \(n-2\)。

构造

对于一棵确定的无根树,对应着唯一确定的 \(prufe\) r序列

无根树转化为prufer序列

一种生成 \(\text{prufer}\) 序列的方法是迭代删点,直到原图仅剩两个点。

对于一棵顶点已经经过编号的树 \(T\)

顶点的编号为 \(1,2,\dots,n\)

在第 $ x$ 步时,移去所有叶子节点(度为 \(1\) 的顶点)中标号最小的顶点和相连的边

并把与它相邻的点的编号加入$\text{prufer} $序列中,重复以上步骤直到原图仅剩两个顶点。

prufer序列转化为无根树

设$ \langle a_1,a_2,\dots,a_{n-2}\rangle$ 为一棵有 \(n\) 个节点的树的 $ \text{prufer}$ 序列

另建一个集合 \(\Bbb G=\{1,2,3,\dots,n\}\)

找出 $\Bbb G $ 中最小的未在 $\text{prufer} $序列中出现过的数

将该点与\(\text{prufer}\) 序列中首项连一条边,并将该点和 \(\text{prufer}\) 序列首项删除

重复操作 \(n-2\) 次,将集合中剩余的两个点之间连边即可。

推论

\(1\)、通过构造过程可知,每个点在度数为 \(1\) 时被删去

其余时刻被加入 $\text{prufer} $ 序列一次则它的度数减少一

所以每个点在$\text{prufer} $ 序列中的出现次数为它的度数 \(d-1\)

\(2\)、\(n\) 个点的有标号的无根树的计数 \(n^{n-2}\)

\(3\) 、\(n\) 个点的有标号的有根树的计数 \(n^{n-1}\)

\(4\)、\(n\)个节点的度依次为\(d_1,d_2,…,d_n\) 的无根树共有 \(\frac{(n-2)!}{ \prod_{i=1}^n(d_i-1)!}\) 个

数论之prufer序列的更多相关文章

  1. bzoj 1005 1211 prufer序列总结

    两道题目大意都是根据每个点的度数来构建一棵无根树来确定有多少种构建方法 这里构建无根树要用到的是prufer序列的知识 先很无耻地抄袭了一段百度百科中的prufer序列的知识: 将树转化成Prufer ...

  2. bzoj1211: prufer序列 | [HNOI2004]树的计数

    题目大意: 告诉你树上每个节点的度数,让你构建出这样一棵树,问能够构建出树的种树 这里注意数量为0的情况,就是 当 n=1时,节点度数>0 n>1时,所有节点度数相加-n!=n-2 可以通 ...

  3. [BZOJ1211][HNOI2004]树的计数(Prufer序列)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1211 分析: 关于无根树的组合数学问题肯定想到Prufer序列,类似bzoj1005那 ...

  4. 树的计数 + prufer序列与Cayley公式 学习笔记

    首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.ne ...

  5. BZOJ 1211 HNOI2004 树的计数 Prufer序列

    题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后 ...

  6. prufer序列笔记

    prufer序列 度娘的定义 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2. 对于一棵确定 ...

  7. BZOJ1430小猴打架——prufer序列

    题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架 的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会 ...

  8. 【XSY2519】神经元 prufer序列 DP

    题目描述 有\(n\)点,每个点有度数限制,\(\forall i(1\leq i\leq n)\),让你选出\(i\)个点,再构造一棵生成树,要求每个点的度数不超过度数限制.问你有多少种方案. \( ...

  9. prufer序列

    介绍 其实是\(pr\ddot{u}fer\)序列 什么是prufer序列? 我们认为度数为\(1\)的点是叶子节点 有一颗无根树,每次选出编号最小的叶子节点,加到当前prufer序列的后面,然后删掉 ...

随机推荐

  1. Magicodes.IE 3.0重磅设计畅谈

    总体设计 Magicodes.IE导入导出通用库,支持Dto导入导出.模板导出.花式导出以及动态导出,支持Excel.Csv.Word.Pdf和Html. IE在去年年底重构一次之后,经过这么长时间的 ...

  2. leetcode72:combinations

    题目描述 给出两个整数n和k,返回从1到n中取k个数字的所有可能的组合 例如: 如果n=4,k=2,结果为 [↵ [2,4],↵ [3,4],↵ [2,3],↵ [1,2],↵ [1,3],↵ [1, ...

  3. Spider--实战--bs静态网页爬取TOP250电影

    import requests from bs4 import BeautifulSoup def gettop250(): headers={ 'user-agent':'Mozilla/5.0 ( ...

  4. 将CSV的数据发送到kafka(java版)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. Mockserver之Moco框架搭建使用

    客户要求进行完整的产品展示,人员和时间都有限,来不及开发后端服务... 工期比较紧的项目,前端已开发完成,需要调试,后端接口还未开发完成... 公司某个项目依赖于第三方服务,但是第三方服务不方便频繁调 ...

  6. jm8.6编解码器概述

    自己在学习h264的路上,欢迎讨论交流. 前段时间研究JM出品的h264编码器,代码实在看不下去,因此换了个角度来研究诸多算法--逆向方式(解码),本系列文章记录一些遇到的东西和思考. 1. JM介绍 ...

  7. menuconfig

    1. menuconfig 的存在意义 原由是 项目的 config 项太多了,需要一个人性化的方式设置. menuconfig 背后是一个应用程序,用户和该应用程序交互,完成 config 设置. ...

  8. Ceph根据Crush位置读取数据

    前言 在ceph研发群里面看到一个cepher在问关于怎么读取ceph的副本的问题,这个功能应该在2012年的时候,我们公司的研发就修改了代码去实现这个功能,只是当时的硬件条件所限,以及本身的稳定性问 ...

  9. ceph卡在active+remapped状态

    最近看到了有人的环境出现了出现了卡在active+remapped状态,并且卡住不动的状态,从pg的状态去看,这个pg值分配了主的pg,没有分配到副本的osd,集群的其他设置一切正常 这个从网上搜寻到 ...

  10. JWT鉴权

    一.HTTP基本认证 Basic Authentication--当浏览器访问使用基本认证的网站的时候, 浏览器会提示你输入用户名和密码. http auth的过程: 客户端发送http请求 服务器发 ...