Python Kafka Client 性能测试
一、前言
由于工作原因使用到了 Kafka,而现有的代码并不能满足性能需求,所以需要开发高效读写 Kafka 的工具,本文是一个 Python Kafka Client 的性能测试记录,通过本次测试,可以知道选用什么第三方库的性能最高,选用什么编程模型开发出来的工具效率最高。
二、第三方库性能测试
1.第三方库
此次测试的是三个主要的 Python Kafka Client:pykafka、kafka-python 和 confluent-kafka,具体介绍见官网:
- pykafka:https://pypi.org/project/pykafka/
- kafka-python:https://pypi.org/project/kafka-python/
- confluent_kafka:https://pypi.org/project/confluent-kafka/
2.测试环境
此次测试使用的 Python 版本是2.7,第三方库的版本为:
- pykafka:2.8.0
- kafka-python:2.0.2
- confluent-kafka:1.5.0
使用的数据总量有50万,每条数据大小为2KB,总共为966MB。
3.测试过程
(1)Kafka Producer 测试
分别使用 pykafka、kafka-python 和 confluent-kafka 实例化一个 Kafka 的 Producer 对象,然后调用相应的 produce 方法将数据推送给 Kafka,数据总条数为50万,比较三个库所耗费的时间,并计算每秒钟可以推送的数据条数和大小,比较得出性能最优的。
代码示例(以 pykafka 为例):
1 import sys
2 from datetime import datetime
3 from pykafka import KafkaClient
4
5
6 class KafkaProducerTool():
7 def __init__(self, broker, topic):
8 client = KafkaClient(hosts=broker)
9 self.topic = client.topics[topic]
10 self.producer = self.topic.get_producer()
11
12 def send_msg(self, msg):
13 self.producer.produce(msg)
14
15
16 if __name__ == '__main__':
17 producer = KafkaProducerTool(broker, topic)
18 print(datetime.now())
19 for line in sys.stdin:
20 producer.send_msg(line.strip())
21 producer.producer.stop()
22 print(datetime.now())
(2)Kafka Consumer 测试
分别使用 pykafka、kafka-python 和 confluent-kafka 实例化一个 Kafka 的 Consumer 对象,然后调用相应的 consume 方法从 Kafka 中消费数据,要消费下来的数据总条数为50万,比较三个库所耗费的时间,并计算每秒钟可以消费的数据条数和大小,比较得出性能最优的。
代码示例(以 pykafka 为例):
1 from datetime import datetime
2 from pykafka import KafkaClient
3
4
5 class KafkaConsumerTool():
6 def __init__(self, broker, topic):
7 client = KafkaClient(hosts=broker)
8 self.topic = client.topics[topic]
9 self.consumer = self.topic.get_simple_consumer()
10
11 def receive_msg(self):
12 count = 0
13 print(datetime.now())
14 while True:
15 msg = self.consumer.consume()
16 if msg:
17 count += 1
18 if count == 500000:
19 print(datetime.now())
20 return
21
22
23 if __name__ == '__main__':
24 consumer = KafkaConsumerTool(broker, topic)
25 consumer.receive_msg()
26 consumer.consumer.stop()
4.测试结果
- Kafka Producer 测试结果:
总耗时/秒 | 每秒数据量/MB | 每秒数据条数 | |
confluent_kafka | 35 | 27.90 | 14285.71 |
pykafka | 50 | 19.53 | 10000 |
kafka-python | 532 | 1.83 | 939.85 |
- Kafka Consumer 测试结果:
总耗时/秒 | 每秒数据量/MB | 每秒数据条数 | |
confluent_kafka | 39 | 25.04 | 12820.51 |
kafka-python | 52 | 18.78 | 9615.38 |
pykafka | 335 | 2.92 | 1492.54 |
5.测试结论
经过测试,在此次测试的三个库中,生产消息的效率排名是:confluent-kafka > pykafka > kafka-python,消费消息的效率排名是:confluent-kafka > kafka-python > pykafka,由此可见 confluent-kafka 的性能是其中最优的,因而选用这个库进行后续开发。
三、多线程模型性能测试
1.编程模型
经过前面的测试已经知道 confluent-kafka 这个库的性能是很优秀的了,但如果还需要更高的效率,应该怎么办呢?当单线程(或者单进程)不能满足需求时,我们很容易想到使用多线程(或者多进程)来增加并发提高效率,考虑到线程的资源消耗比进程少,所以打算选用多线程来进行开发。那么多线程消费 Kafka 有什么实现方式呢?我想到的有两种:
- 一个线程实现一个 Kafka Consumer,最多可以有 n 个线程同时消费 Topic(其中 n 是该 Topic 下的分区数量);
- 多个线程共用一个 Kafka Consumer,此时也可以实例化多个 Consumer 同时消费。
对比这两种多线程模型:
- 模型1实现方便,可以保证每个分区有序消费,但 Partition 数量会限制消费能力;
- 模型2并发度高,可扩展能力强,消费能力不受 Partition 限制。
2.测试过程
(1)多线程模型1
测试代码:
1 import time
2 from threading import Thread
3 from datetime import datetime
4 from confluent_kafka import Consumer
5
6
7 class ChildThread(Thread):
8 def __init__(self, name, broker, topic):
9 Thread.__init__(self, name=name)
10 self.con = KafkaConsumerTool(broker, topic)
11
12 def run(self):
13 self.con.receive_msg()
14
15
16 class KafkaConsumerTool:
17 def __init__(self, broker, topic):
18 config = {
19 'bootstrap.servers': broker,
20 'session.timeout.ms': 30000,
21 'auto.offset.reset': 'earliest',
22 'api.version.request': False,
23 'broker.version.fallback': '2.6.0',
24 'group.id': 'test'
25 }
26 self.consumer = Consumer(config)
27 self.topic = topic
28
29 def receive_msg(self):
30 self.consumer.subscribe([self.topic])
31 print(datetime.now())
32 while True:
33 msg = self.consumer.poll(timeout=30.0)
34 print(msg)
35
36
37 if __name__ == '__main__':
38 thread_num = 10
39 threads = [ChildThread("thread_" + str(i + 1), broker, topic) for i in range(thread_num)]
40
41 for i in range(thread_num):
42 threads[i].setDaemon(True)
43 for i in range(thread_num):
44 threads[i].start()
因为我使用的 Topic 共有8个分区,所以我分别测试了线程数在5个、8个和10个时消费50万数据所需要的时间,并计算每秒可消费的数据条数。
(2)多线程模型2
测试代码:
1 import time
2 from datetime import datetime
3 from confluent_kafka import Consumer
4 from threadpool import ThreadPool, makeRequests
5
6
7 class KafkaConsumerTool:
8 def __init__(self, broker, topic):
9 config = {
10 'bootstrap.servers': broker,
11 'session.timeout.ms': 30000,
12 'auto.offset.reset': 'earliest',
13 'api.version.request': False,
14 'broker.version.fallback': '2.6.0',
15 'group.id': 'mini-spider'
16 }
17 self.consumer = Consumer(config)
18 self.topic = topic
19
20 def receive_msg(self, x):
21 self.consumer.subscribe([self.topic])
22 print(datetime.now())
23 while True:
24 msg = self.consumer.poll(timeout=30.0)
25 print(msg)
26
27
28 if __name__ == '__main__':
29 thread_num = 10
30 consumer = KafkaConsumerTool(broker, topic)
31 pool = ThreadPool(thread_num)
32 for r in makeRequests(consumer.receive_msg, [i for i in range(thread_num)]):
33 pool.putRequest(r)
34 pool.wait()
主要使用 threadpool 这个第三方库来实现线程池,此处当然也可以使用其他库来实现,这里我分别测试了线程数量在5个和10个时消费50万数据所需要的时间,并计算每秒可消费的数据条数。
3.测试结果
- 多线程模型1
总数据量/万 | 线程数量 | 总耗时/秒 | 每秒数据条数 |
50 | 5 | 27 | 18518.51 |
50 | 8 | 24 | 20833.33 |
50 | 10 | 26 | 19230.76 |
- 多线程模型2
总数据量/万 | 线程数量 | 总耗时/秒 | 每秒数据条数 |
50 | 5 | 17 | 29411.76 |
50 | 10 | 13 | 38461.53 |
4.测试结论
使用多线程可以有效提高 Kafka 的 Consumer 消费数据的效率,而选用线程池共用一个 KafkaConsumer 的消费方式的消费效率更高。
Python Kafka Client 性能测试的更多相关文章
- python kafka client--confluent-kafka-python
项目中需要使用python 向Kafka生产和消费数据,最初使用pykafka .后来发现pykafka不支持client.id. 最后,终于找到confluent-kafka. python kaf ...
- Windbg调优Kafka.Client内存泄露
从来没写过Blog,想想也是,工作十多年了,搞过N多的架构.技术,不与大家分享实在是可惜了.另外,从传统地ERP行业转到互联网,也遇到了很所前所未有的问题,原来知道有一些坑,但是不知道坑太多太深.借着 ...
- .net Kafka.Client多个Consumer Group对Topic消费不能完全覆盖研究总结(一)
我们知道Kafka支持Consumer Group的功能,但是最近在应用Consumer Group时发现了一个Topic 的Partition不能100%覆盖的问题. 程序部署后,发现Kafka在p ...
- .net Kafka.Client多个Consumer Group对Topic消费不能完全覆盖研究总结(二)
依据Partition和Consumer的Rebalance策略,找到Kafka.Client Rebalance代码块,还原本地环境,跟踪调试,发现自定义Consumer Group 的Consum ...
- golang kafka client
针对golang的 kafka client 有很多开源package,例如sarama, confluent等等.在使用sarama 包时,高并发中偶尔遇到crash.于是改用confluent-k ...
- mac虚拟机搭建自动化环境-wda和python wda client
尽量升级Xcode到最新版,保持iPhone的版本大于9.3 1.安装webDriverAgent到ios真机 从github上下载代码:git clone https://github.com/fa ...
- python kafka权限校验client.id
kafka集群有权限校验,在连接时需要加入client.id.但pykafka不能配置该选项.搜索了一下,需要使用confluent-kafka 链接: https://blog.csdn.net/l ...
- ReferenceError: weakly-referenced object no longer exists Python kafka
Python存入kafka报错,ReferenceError: weakly-referenced object no longer exists. Exception in thread 14: p ...
- Python技术栈性能测试工具Locust入门
Locust是一款Python技术栈的开源的性能测试工具.Locust直译为蝗虫,寓意着它能产生蝗虫般成千上万的并发用户: Locust并不小众,从它Github的Star数量就可见一斑: 截止文章写 ...
随机推荐
- Java并发编程的艺术(十)——线程池
线程池的作用 降低资源消耗.重复利用已有线程,减少线程的创建和销毁造成的消耗. 提高响应速度.当有任务需要处理的时候,就不用再花费重新创建线程的时间了. 提高线程的可管理性.不合理利用线程,会浪费资源 ...
- 协程gevent学习
import gevent def f1(): print(11) gevent.sleep(2) print(33) def f2(): print(22) gevent.sleep(1) prin ...
- 庐山真面目之八微服务架构 NetCore 基于 Dockerfile 文件部署
庐山真面目之八微服务架构 NetCore 基于 Dockerfile 文件部署 一.简介 从今天开始,不出意外的话,以后所写的文章中所介绍项目的部署环境都应该会迁移到Linux环境上,而且是 ...
- MySQL(二):快速理解MySQL数据库索引
索引 基本概念:索引是在存储引擎层实现的,而不是在服务器层实现的,所以不同存储引擎具有不同的索引类型和实现. 数据结构 Tree 指的是 Balance Tree,也就是平衡树.平衡树是一颗查找树,并 ...
- pytorch实现 | Deformable Convolutional Networks | CVPR | 2017
文章转载自微信公众号:[机器学习炼丹术],请支持原创. 这一篇文章,来讲解一下可变卷积的代码实现逻辑和可视化效果.全部基于python,没有C++.大部分代码来自:https://github.com ...
- mysql锁机制 读书笔记
目录 MySQL锁机制 1.什么是锁 2.lock与latch 3.InnoDB存储引擎中的锁 3.1锁的类型 3.2 一致性非锁定读 3.3 一致性锁定读 4 锁的算法 4.1行锁的3中算法 4.2 ...
- Thymeleaf是个什么东东?
Thymeleaf是面向Web和独立环境的现代服务器端Java模板引擎,能够处理HTML,XML,JavaScript,CSS甚至纯文本. Thymeleaf的主要目标是提供一个优雅和高度可维护的创建 ...
- 李宏毅机器学习课程笔记-2.5线性回归Python实战
本文为作者学习李宏毅机器学习课程时参照样例完成homework1的记录. 任务描述(Task Description) 现在有某地空气质量的观测数据,请使用线性回归拟合数据,预测PM2.5. 数据集描 ...
- git原理学习记录:从基本指令到背后原理,实现一个简单的git
一开始我还担心 git 的原理会不会很难懂,但在阅读了官方文档后我发现其实并不难懂,似乎可以动手实现一个简单的 git,于是就有了下面这篇学习记录. 本文的叙述思路参照了官方文档Book的原理介绍部分 ...
- web项目报错 无法解析,丢失包 是缺少本地运行jre
1.通过build path 添加add Library 2.添加jre