• 文章原创自:微信公众号「机器学习炼丹术」
  • 作者:炼丹兄
  • 联系方式:微信cyx645016617

  • 代码来自github

【前言】:看代码的时候,也许会不理解VIT中各种组件的含义,但是这个文章的目的是了解其实现。在之后看论文的时候,可以做到心中有数,而不是一片茫然。

VIT类

初始化

和之前的学习一样,从大模型类开始看起,然后一点一点看小模型类:

class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
assert num_patches > MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for attention to be effective (at least 16). Try decreasing your patch size'
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.patch_size = patch_size self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool
self.to_latent = nn.Identity() self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)

在实际的调用中,是如下调用的:

model = ViT(
dim=128,
image_size=224,
patch_size=32,
num_classes=2,
channels=3,
).to(device)

输入参数讲解:

  • image_size:图片的大小;
  • patch_size:把图片划分成小的patch,小的patch的尺寸;
  • num_classes:这次分类任务的类别总数;
  • channels:输入图片的通道数。

VIT类中初始化的组件:

  • num_patches:一个图片划分成多少个patch,因为图片224,patch32,所以划分成7x7=49个patches;
  • patch_dim:3x32x32,理解为一个patch中的元素个数;

......这样展示是不是非常的麻烦,还要上下来回翻看代码,所以我写成注释的形式

class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
# image_size=224,patch_size=32,num_classes=2,channels=3,dim=128
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
# num_pathes = (224//32)**2 = 7*7=49
num_patches = (image_size // patch_size) ** 2
# patch_dim = 3*32*32
patch_dim = channels * patch_size ** 2
assert num_patches > MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for attention to be effective (at least 16). Try decreasing your patch size'
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
# self.patch_size = 32
self.patch_size = patch_size
# self.pos_embedding是一个形状为(1,50,128)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
# self.patch_to_embedding是一个从3*32*32到128映射的线性层
self.patch_to_embedding = nn.Linear(patch_dim, dim)
# self.cls_token是一个随机初始化的形状为(1,1,128)这样的变量
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout) # Transformer后面会讲解
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool
self.to_latent = nn.Identity() self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)

forward

现在看VIT的推理过程:

    def forward(self, img, mask = None):
# p=32
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x) # x.shape=[b,49,128]
b, n, _ = x.shape # n = 49 cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1) # x.shape=[b,50,128]
x += self.pos_embedding[:, :(n + 1)] # x.shape=[b,50,128]
x = self.dropout(x) x = self.transformer(x, mask) # x.shape=[b,50,128],mask=None x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x)
return self.mlp_head(x)
  • 这里的代码用到了from einops import rearrange, repeat,这个库函数,einops是一个库函数,是对张量进行操作的库函数,支持pytorch,TF等。
  • einops.rearrange是把输入的img,从[b,3,224,224]的形状改成[b,3,7,32,7,32]的形状,通过矩阵的转置换成[b,7,7,32,32,3]的样子,最后合并成[b,49,32x32x3]
  • self.patch_to_embedding,输出的x的形状为[b,49,128];
  • einops.repeat是把self.cls_token从[1,1,128]复制成[b,1,128]

现在,我们知道从patch到embedding是用线性层实现的。

transformer

class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout):
# dim=128,depth=12,heads=8,dim_head=64,mlp_dim=128
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
]))
def forward(self, x, mask = None):
for attn, ff in self.layers:
x = attn(x, mask = mask)
x = ff(x)
return x
  • self.layers中包含depth组的Attention+FeedForward模块。
  • 这里需要记得,输入的x的尺寸为[b,50,128]

Attention

class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads # 64 x 8
self.heads = heads # 8
self.scale = dim_head ** -0.5 self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) def forward(self, x, mask = None):
b, n, _, h = *x.shape, self.heads # n=50,h=8
# self.to_qkv(x)得到的尺寸为[b,50,64x8x3],然后chunk成3份
# 也就是说,qkv是一个三元tuple,每一份都是[b,50,64x8]的大小
qkv = self.to_qkv(x).chunk(3, dim = -1)
# 把每一份从[b,50,64x8]变成[b,8,50,64]的形式
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
# 这一步不太好理解,q和k都是[b,8,50,64]的形式,50理解为特征数量,64为特征变量
# dots.shape=[b,8,50,50]
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
# 不考虑mask这一块的内容
mask_value = -torch.finfo(dots.dtype).max if mask is not None:
mask = F.pad(mask.flatten(1), (1, 0), value = True)
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
mask = mask[:, None, :] * mask[:, :, None]
dots.masked_fill_(~mask, mask_value)
del mask
# 对[b,8,50,50]的最后一个维度做softmax
attn = dots.softmax(dim=-1) # 这个attn就是计算出来的自注意力值,和v做点乘,out.shape=[b,8,50,64]
out = torch.einsum('bhij,bhjd->bhid', attn, v)
# out.shape变成[b,50,8x64]
out = rearrange(out, 'b h n d -> b n (h d)')
# out.shape重新变成[b,60,128]
out = self.to_out(out)
return out

综上所属,这个attention其实就是一个自注意力模块,输入的是[b,50,128],返回的也是[b,50,128]。实现的过程因为使用了torch.einsum所以有些复杂,但是总的来说,和我之前讲过的一篇论文"non-local"模块,是完全一样的。torch.einsum和torch.mm原理相同,只是因为torch.mm不支持高纬度的张量做矩阵乘法。

PreNorm

class PreNorm(nn.Module):
def __init__(self, dim, fn):
# dim=128,fn=Attention/FeedForward
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)

先对输入的x(x.shape=[b,50,128])做一个layerNormalization层归一化,然后再放到上面的Attention模块中做自注意力。

Residual

class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x

一个残差模块罢了。

FeedForward

class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
# dim=128,hidden_dim=128
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)

就是两个线性层,这里有意思的是GELU()激活函数,这个激活函数可以直接使用torch.nn.GELU()调用,回头有机会再好好讲一下GELU()的原理。

transformer总结

Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
  • 第一个就是,先对输入做layerNormalization,然后放到attention得到attention的结果,然后结果和做layerNormalization之前的输入相加做一个残差链接;
  • 第二个就是,x->LayerNormalization->FeedForward线性层->y,然后这个y和输入的x相加,做残差连接。

VIT总结

回顾一下整个流程:

  • 一个图片224x224,分成了49个32x32的patch;
  • 对这么多的patch做embedding,成49个128向量;
  • 再拼接一个cls_tokens,变成50个128向量;
  • 再加上pos_embedding,还是50个128向量;
  • 这些向量输入到transformer中进行自注意力的特征提取;
  • 输出的是50个128向量,然后对这个50个求军职,变成一个128向量;
  • 然后线性层把128维变成2维从而完成二分类任务的transformer模型。

问题:我对NLP了解不深入,有没有人可以回答一下这个问题:cls_tokens和pos_embedding的用处是什么?

VIT Vision Transformer | 先从PyTorch代码了解的更多相关文章

  1. ICCV2021 | 渐进采样式Vision Transformer

    ​  前言  ViT通过简单地将图像分割成固定长度的tokens,并使用transformer来学习这些tokens之间的关系.tokens化可能会破坏对象结构,将网格分配给背景等不感兴趣的区域,并引 ...

  2. ICCV2021 | Tokens-to-Token ViT:在ImageNet上从零训练Vision Transformer

    ​  前言  本文介绍一种新的tokens-to-token Vision Transformer(T2T-ViT),T2T-ViT将原始ViT的参数数量和MAC减少了一半,同时在ImageNet上从 ...

  3. 目标检测之Faster-RCNN的pytorch代码详解(数据预处理篇)

    首先贴上代码原作者的github:https://github.com/chenyuntc/simple-faster-rcnn-pytorch(非代码作者,博文只解释代码) 今天看完了simple- ...

  4. ICCV2021 | Vision Transformer中相对位置编码的反思与改进

    ​前言  在计算机视觉中,相对位置编码的有效性还没有得到很好的研究,甚至仍然存在争议,本文分析了相对位置编码中的几个关键因素,提出了一种新的针对2D图像的相对位置编码方法,称为图像RPE(IRPE). ...

  5. (原)SphereFace及其pytorch代码

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8524937.html 论文: SphereFace: Deep Hypersphere Embeddi ...

  6. (转载)PyTorch代码规范最佳实践和样式指南

    A PyTorch Tools, best practices & Styleguide 中文版:PyTorch代码规范最佳实践和样式指南 This is not an official st ...

  7. PyTorch代码调试利器: 自动print每行代码的Tensor信息

    本文介绍一个用于 PyTorch 代码的实用工具 TorchSnooper.作者是TorchSnooper的作者,也是PyTorch开发者之一. GitHub 项目地址: https://github ...

  8. 如何将tensorflow1.x代码改写为pytorch代码(以图注意力网络(GAT)为例)

    之前讲解了图注意力网络的官方tensorflow版的实现,由于自己更了解pytorch,所以打算将其改写为pytorch版本的. 对于图注意力网络还不了解的可以先去看看tensorflow版本的代码, ...

  9. pointnet.pytorch代码解析

    pointnet.pytorch代码解析 代码运行 Training cd utils python train_classification.py --dataset <dataset pat ...

随机推荐

  1. 「译」Blazor VS React React / Angular / Vue.js

    原文作者: Christian Findlay 原文链接: https://christianfindlay.com/2020/06/04/blazor-vs-react-angular-vue-js ...

  2. securefx 系统中不到指定文件 (转中文)

    如何处理上传工具SecureFX中的中文乱码 工具/原料   SecureFX centos7 方法/步骤  转百度知道 https://jingyan.baidu.com/article/eae07 ...

  3. day123:MoFang:直播间列表信息的前后端实现&创建房间的前后端实现

    目录 1.服务端提供所有直播间的列表信息 2.前端显示房间列表 3.创建房间 1.服务端提供所有直播间的列表信息 1.marshmallow.py from marshmallow_sqlalchem ...

  4. Dubbo 配置的加载流程

    配置加载流程 在SpringBoot应用启动阶段,Dubbo的读取配置遵循以下原则 Dubbo支持了多层级的配置,按照预先定义的优先级自动实现配置之间的覆盖,最终所有的配置汇总到数据总线URL后,驱动 ...

  5. Linux 入门教程:00 Background

    Linux 为何物? 就是一个操作系统. Linux 历史: 操作系统始于二十世纪五十年代,当时的操作系统能运行批处理程序.批处理程序不需要用户的交互,它从文件或者穿孔卡片读取数据,然后输出到另外一个 ...

  6. C++ 异常机制(上)

    目录 一.概念 二.异常的好处 三.基本语法 四.栈解旋 五.异常接口声明 六.异常对象的内存模型 七.异常对象的生命周期 一.概念 异常:存在于运行时的反常行为,这些行为超过了函数的正常的功能范围. ...

  7. 数据库MySQL(带你零基础入门MySQL)

    (一)认识数据库 redis默认端口:6379 mysql默认端口:3306 什么是数据库? 数据库的英文单词:data base,简称DB. 数据库实际上就是一个文件集合,是一个存储数据的仓库,本质 ...

  8. mac配置Android SDK

    下载地址:http://tools.android-studio.org/index.php/sdk 2.找到tools文件夹 选中android-sdk-macosx包下的tools文件夹,按com ...

  9. 你都用过SpringCloud的哪些组件,它们的原理是什么?

    前言 看到文章的题目了吗?就是这么抽象和笼统的一个问题,确实是我面试中真实被问到的,某共享货车平台的真实面试问题. SpringCloud确实是用过,但是那是三四年前了,那个时候SpringCloud ...

  10. 【Linux】rsync错误解析

    rsync: Failed to exec ssh: No such file or directory (2) rsync error: error in IPC code (code 14) at ...