文章概览:
1、MapReduce简介
2、MapReduce有哪些角色?各自的作用是什么?
3、MapReduce程序执行流程
4、MapReduce工作原理
5、MapReduce中Shuffle过程
6、MapReduce编程主要组件
7、针对MapReduce的缺点,YARN解决了什么?

MapReduce简介

MapReduce是一种并行可扩展计算模型,并且有较好的容错性,主要解决海量离线数据的批处理。实现下面目标
★ 易于编程
★ 良好的扩展性
★ 高容错性
 

MapReduce有哪些角色?各自的作用是什么?

MapReduce由JobTracker和TaskTracker组成。JobTracker负责资源管理和作业控制,TaskTracker负责任务的运行。
 

MapReduce程序执行流程

程序执行流程图如下:
 
(1) 开发人员编写好MapReduce program,将程序打包运行。
(2) JobClient向JobTracker申请可用Job,JobTracker返回JobClient一个可用Job ID。
(3) JobClient得到Job ID后,将运行Job所需要的资源拷贝到共享文件系统HDFS中。
(4) 资源准备完备后,JobClient向JobTracker提交Job。
(5) JobTracker收到提交的Job后,初始化Job。
(6) 初始化完成后,JobTracker从HDFS中获取输入splits(作业可以该启动多少Mapper任务)。
(7) 与此同时,TaskTracker不断地向JobTracker汇报心跳信息,并且返回要执行的任务。
(8) TaskTracker得到JobTracker分配(尽量满足数据本地化)的任务后,向HDFS获取Job资源(若数据是本地的,不需拷贝数据)。
(9) 获取资源后,TaskTracker会开启JVM子进程运行任务。
注:
(3)中资源具体指什么?主要包含:
    ● 程序jar包、作业配置文件xml
    ● 输入划分信息,决定作业该启动多少个map任务
    ● 本地文件,包含依赖的第三方jar包(-libjars)、依赖的归档文件(-archives)和普通文件(-files),如果已经上传,则不需上传
 

MapReduce工作原理

工作原理图如下:
map task
程序会根据InputFormat将输入文件分割成splits,每个split会作为一个map task的输入,每个map task会有一个内存缓冲区,
输入数据经过map阶段处理后的中间结果会写入内存缓冲区,并且决定数据写入到哪个partitioner,当写入的数据到达内存缓冲
区的的阀值(默认是0.8),会启动一个线程将内存中的数据溢写入磁盘,同时不影响map中间结果继续写入缓冲区。在溢写过程中,
MapReduce框架会对key进行排序,如果中间结果比较大,会形成多个溢写文件,最后的缓冲区数据也会全部溢写入磁盘形成一个溢写
文件(最少有一个溢写文件),如果是多个溢写文件,则最后合并所有的溢写文件为一个文件。

reduce task

当所有的map task完成后,每个map task会形成一个最终文件,并且该文件按区划分。reduce任务启动之前,一个map task完成后,
就会启动线程来拉取map结果数据到相应的reduce task,不断地合并数据,为reduce的数据输入做准备,当所有的map tesk完成后,
数据也拉取合并完毕后,reduce task 启动,最终将输出输出结果存入HDFS上。
 

MapReduce中Shuffle过程

Shuffle的过程:描述数据从map task输出到reduce task输入的这段过程。
我们对Shuffle过程的期望是:
★ 完整地从map task端拉取数据到reduce task端 
★ 跨界点拉取数据时,尽量减少对带宽的不必要消耗
★ 减小磁盘IO对task执行的影响
 
先看map端:
split被送入map task后,程序库决定数据结果数据属于哪个partitioner,写入到内存缓冲区,到达阀值,开启溢写过程,进行key排序,
如果有combiner步骤,则会对相同的key做归并处理,最终多个溢写文件合并为一个文件。
 
再看reduce端:
多个map task形成的最终文件的对应partitioner会被对应的reduce task拉取至内存缓冲区,对可能形成多个溢写文件合并,最终
作为resuce task的数据输入 。
 

MapReduce编程主要组件

InputFormat类:分割成多个splits和每行怎么解析。   
Mapper类:对输入的每对<key,value>生成中间结果。
Combiner类:在map端,对相同的key进行合并。
Partitioner类:在shuffle过程中,将按照key值将中间结果分为R份,每一份都由一个reduce去完成。
Reducer类:对所有的map中间结果,进行合并。
OutputFormat类:负责输出结果格式。
编程框架如下:
 
 

针对MapReduce的缺点,YARN解决了什么?

MapReduce由以下缺点:
★ JobTracker挂掉,整个作业挂掉,存在单点故障
★ JobTracker既负责资源管理又负责作业控制,当作业增多时,JobTracker内存是扩展的瓶颈
★ map task全部完成后才能执行reduce task,造成资源空闲浪费
YARN设计考虑以上缺点,对MapReduce重新设计:
★ 将JobTracker职责分离,ResouceManager全局资源管理,ApplicationMaster管理作业的调度
★ 对ResouceManager做了HA设计
★ 设计了更细粒度的抽象资源容器Container
 
个人博客地址:http://wangxiaolong.org/
 
参考:

MapReduce工作原理详解的更多相关文章

  1. 块级格式化上下文(block formatting context)、浮动和绝对定位的工作原理详解

    CSS的可视化格式模型中具有一个非常重要地位的概念——定位方案.定位方案用以控制元素的布局,在CSS2.1中,有三种定位方案——普通流.浮动和绝对定位: 普通流:元素按照先后位置自上而下布局,inli ...

  2. log4j-over-slf4j工作原理详解

    log4j-over-slf4j工作原理详解 摘自:https://blog.csdn.net/john1337/article/details/76152906 置顶 2017年07月26日 17: ...

  3. Hadoop MapReduce八大步骤以及Yarn工作原理详解

    Hadoop是市面上使用最多的大数据分布式文件存储系统和分布式处理系统, 其中分为两大块分别是hdfs和MapReduce, hdfs是分布式文件存储系统, 借鉴了Google的GFS论文. MapR ...

  4. ASP.NET页面与IIS底层交互和工作原理详解

    转载自:http://www.cnblogs.com/lidabo/archive/2012/03/13/2393200.html 第一回: 引言 我查阅过不少Asp.Net的书籍,发现大多数作者都是 ...

  5. ASP.NET页面与IIS底层交互和工作原理详解(第一回)

    引言 我查阅过不少Asp.Net的书籍,发现大多数作者都是站在一个比较高的层次上讲解Asp.Net.他们耐心.细致地告诉你如何一步步拖放控件.设置控件属性.编写CodeBehind代码,以实现某个特定 ...

  6. 交换机工作原理、MAC地址表、路由器工作原理详解

    一:MAC地址表详解 说到MAC地址表,就不得不说一下交换机的工作原理了,因为交换机是根据MAC地址表转发数据帧的.在交换机中有一张记录着局域网主机MAC地址与交换机接口的对应关系的表,交换机就是根据 ...

  7. HTTP响应报文与工作原理详解

    超文本传输协议(Hypertext Transfer Protocol,简称HTTP)是应用层协议.HTTP 是一种请求/响应式的协议,即一个客户端与服务器建立连接后,向服务器发送一个请求;服务器接到 ...

  8. 【转】HTTP响应报文与工作原理详解

    超文本传输协议(Hypertext Transfer Protocol,简称HTTP)是应用层协议.HTTP 是一种请求/响应式的协议,即一个客户端与服务器建立连接后,向服务器发送一个请求;服务器接到 ...

  9. HTTP响应报文与工作原理详解(转)

    超文本传输协议(Hypertext Transfer Protocol,简称HTTP)是应用层协议.HTTP 是一种请求/响应式的协议,即一个客户端与服务器建立连接后,向服务器发送一个请求;服务器接到 ...

随机推荐

  1. JVM学习(三)JVM垃圾回收

    一.引用的分类 在了解JVM垃圾回收机制之前,了解一下对象的引用类型是非常必要的. 强引用:GC时不会被回收 软引用:描述有用但不是必须的对象,在发生内存溢出异常之前被回收 弱引用:描述有用但不是必须 ...

  2. MyBatis学习(二)代码实战

    一.项目依赖 本项目是基于mybatis3.4.6版本实现的,用到的jar包如下 二.项目结构解析 三.配置文件解析 四.mapper文件解析 <?xml version="1.0&q ...

  3. 用 Java 做个“你画手机猜”的小游戏

    本文适合有 Java 基础的人群 作者:DJL-Lanking HelloGitHub 推出的<讲解开源项目>系列.有幸邀请到了亚马逊 + Apache 的工程师:Lanking( htt ...

  4. UnityShader学习笔记- Stencil Buffer

    模板测试(Stencil Test)是现代渲染流水线的一环,其中涉及到的就是模板缓冲(Stencil Buffer),模板缓冲可以用来制作物体的遮罩.轮廓描边.阴影.遮挡显示等等效果 目录 Stenc ...

  5. (转载)浏览器 user-agent 字符串的故事

    本文转载自:http://www.cnblogs.com/ifantastic/p/3481231.html. 如有侵权,请联系处理!   你是否好奇标识浏览器身份的User-Agent,为什么每个浏 ...

  6. flutter json_annotation和json_serializable处理json数据序列化

    flutter json_annotation和json_serializable处理json数据序列化 导包 dependencies: json_annotation: ^2.4.0 dev_de ...

  7. IDEA2020版最佳优化思路(中文界面)

    IDEA优化 基于当前最新版idea 2020.1版本进行设置 设置中文 在idea 2020.1版本后官方是支持中文啦 先上效果图 设置方法 这里需要下载官方的中文包 鼠标悬停提示 效果图 设置方法 ...

  8. 039 01 Android 零基础入门 01 Java基础语法 05 Java流程控制之循环结构 01 循环结构概述

    039 01 Android 零基础入门 01 Java基础语法 05 Java流程控制之循环结构 01 循环结构概述 本文知识点:循环结构概述 循环结构主要内容 while 循环 do-whiile ...

  9. visual studio 2015 Opencv4.0.1配置

    最近由于工作需要,要配置opencv,我的电脑vs的version是2015,在网上下载了最新的opencv 4.0.1 自己摸索总是很困难,网上的例子也比较多,但版本比较低,也不确定适不适合vs20 ...

  10. JavaScript打印给定区间年份的闰年

    要求: 用户输入需要判断的年份区间,开始年份和结束年份,输出该区间内所有的闰年. 代码实现: function isRunYear(year) { // 是闰年返回true,否则返回false var ...