3-Pandas之Series和DataFrame区别
一、Pandas
pandas的数据元素包括以下几种类型:
类型 | 说明 |
object | 字符串或混合类型 |
int | 整型 |
float | 浮点型 |
datetime | 时间类型 |
bool | 布尔型 |
二、Series与DataFrame区别:
- Series是带索引的一维数组
- Series对象的两个重要属性是:index(索引)和value(数据值)
- DataFrame的任意一行或者一列就是一个Series对象
三、创建Series对象:pd.Series(data,index=index)
其中data可以是很多类型:
- 一个列表---------->pd.Series([1,2,3])
- 一个ndarray------->pd.Series(np.random.randint(2),index=['a','b'])
- 一个python字典---->pd.Series({"a":2,"b":0})
- 一个标量值-------->pd.Series(3,index=[1,2,3])
Series在算数运算中会自动对齐不同索引的数据:
例如:
>>> s=pd.Series([1,2,3],index=['a','b','c'])
>>> a=pd.Series([4,1,0],index=['b','a','c'])
>>> s+a
a 2
b 6
c 3
unique():返回结果是一个数组,包含Series去重后的元素
value_counts():查看每一个唯一元素的频数
四、创建DataFrame对象:pd.DataFrame(data,index,columns)
与Series不同的是,DataFrame包括索引index和表头columns:
其中data可以是很多类型:
- 包含列表、字典或者Series的字典
- 二维数组
- 一个Series对象
- 另一个DataFrame对象
例如:
1、从字典创建:
>>> d = {'one':pd.Series([1,2,3],index=['a','b','c']), 'two':pd.Series([2,3,4],index=['a','b','d'])}
>>> pd.DataFrame(d)
one two
a 1.0 2.0
b 2.0 3.0
c 3.0 NaN
d NaN 4.0
2、从字典创建
>>> pd.DataFrame(d,index=['a','b'],columns=['w1','w2'])
w1 w2
a NaN NaN
b NaN NaN
>>> pd.DataFrame(d,index=['a','b'],columns=['one','two'])
one two
a 1 2
b 2 3
五、DataFrame的数据筛选
与Series类似,可通过布尔表达式按照一定条件进行筛选。不同于Series的是,DataFrame布尔筛选返回的是满足筛选条件的样本的所有列的数据(即:一返回就是一条记录)。
上例子!
>>> d = {'one':pd.Series([1,2,3],index=['a','b','c']),'two':pd.Series([2,3,4],index=['a','b','d'])}
>>> pd.DataFrame(d)
>>> d[d['one']<3]
one two
a 1.0 2.0
b 2.0 3.0
六、DataFrame的删除和添加一列
添加一列:(1)像字典一样通过赋值的方式执行
>>> d['three']=d['one']+d['two']
(2)使用insert()在指定位置插入一列,例如在位置1插入新的一列'new',值为0
>>> d.insert(1,'new',np.zeros((4,1)))
>>> d
one new two three
a 1.0 0.0 2.0 3.0
b 2.0 0.0 3.0 5.0
c 3.0 0.0 NaN NaN
d NaN 0.0 4.0 NaN
删除一列:像字典一样------>使用pop()或者del(),pop()可以在删除列的基础之上将删除的列赋值给一个新的变量
>>> del d['three']
>>> d
one new two
a 1.0 0.0 2.0
b 2.0 0.0 3.0
c 3.0 0.0 NaN
d NaN 0.0 4.0
>>> new = d.pop('new')
>>> d
one two
a 1.0 2.0
b 2.0 3.0
c 3.0 NaN
d NaN 4.0
>>> new
a 0.0
b 0.0
c 0.0
d 0.0
Name: new, dtype: float64
六、DataFrame修改索引名:使用rename()方法
>>> d
one two
a 1.0 2.0
b 2.0 3.0
c 3.0 NaN
d NaN 4.0
>>> i = {'a':'A','b':'B'}
>>> d.rename(index=i)
one two
A 1.0 2.0
B 2.0 3.0
c 3.0 NaN
d NaN 4.0
3-Pandas之Series和DataFrame区别的更多相关文章
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- Python之Pandas中Series、DataFrame
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- Python之Pandas中Series、DataFrame实践
Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...
- Pandas中Series和DataFrame的索引
在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- pandas学习series和dataframe基础
PANDAS 的使用 一.什么是pandas? 1.python Data Analysis Library 或pandas 是基于numpy的一种工具,该工具是为了解决数据分析人物而创建的. 2.p ...
- [Python] Pandas 中 Series 和 DataFrame 的用法笔记
目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 ...
- pandas中series和dataframe之间的区别
series结构有索引,和列名组成,如果没有,那么程序会自动赋名为None series的索引名具有唯一性,索引可以数字和字符,系统会自动将他们转化为一个类型object. dataframe由索引和 ...
随机推荐
- IDEA中文注释难看的简单解决办法
好多人会发现IDEA这款集成开发工具的中文(主要是在注释上面)显示都比较难看,如下面: 都以为是字体的原因,于是各种替换字体,麻烦不说,还容易造成乱码的问题. 真正难看的原因并不是字体,而是以为是斜体 ...
- scala数据结构(一)
一.概述 1,特点 )Scala同时支持不可变集合和可变集合 )两个主要的包: 不可变集合:scala.collection.immutable 可变集合: scala.collection.muta ...
- Mybatis架构相关的知识
如上所示,这是一个简单的Mybaits执行流程. 我们其实可以看到,一直到第三步(Sqlsession)那么一步,这都是我们的程序里需要创建的.而之后的步骤才是底层完成的任务. 这里就有了一个引申的概 ...
- rem和px
做过一段时间的H5页面,但是对于rem与px的换算还是比较模糊,总是引用一段脚本,也没有深究过为什么,就稀里糊涂的用了,遇到一些细微的地方,总是不知道是什么原因导致的,我总是只要能完成效果就行,全然不 ...
- 前端分页(js)
//前端分页 var limit = 10; //每页显示数据条数 var total = $('#host_table').find('tr').length; var allPage = tota ...
- Docker容器和镜像的区别
docker容器和镜像区别 转自 https://www.cnblogs.com/bethal/p/5942369.html 这篇文章希望能够帮助读者深入理解Docker的命令,还有容器(conta ...
- LoadLibraryA与GetProcAddress介绍
0x00 函数原型 HMODULE LoadLibraryA( LPCTSTR lpLibFileName//模块的的的名字 ) FARPROC GetProcAddress( HMODULE ...
- Docker 安装并使用mysql
上一篇介绍了Docker在CentOS中的安装,本文介绍如何在Docker中安装并使用mysql 1.拉取最新的mysql镜像 [root]# docker pull mysql 2.查看已有镜像 [ ...
- Python之爬虫从入门到放弃(十三) Scrapy框架整体的了解
这里是通过爬取伯乐在线的全部文章为例子,让自己先对scrapy进行一个整理的理解 该例子中的详细代码会放到我的github地址:https://github.com/pythonsite/spider ...
- 老司机带你玩转面试(1):缓存中间件 Redis 基础知识以及数据持久化
引言 今天周末,我在家坐着掐指一算,马上又要到一年一度的金九银十招聘季了,国内今年上半年受到 YQ 冲击,金三银四泡汤了,这就直接导致很多今年毕业的同学会和明年毕业的同学一起参加今年下半年的秋招,这个 ...