CF EC 86 E Placing Rooks 组合数学
LINK:Placing Rooks
丢人现场.jpg
没看到题目中的条件 放n个rook 我以为可以无限放 自闭了好半天。
其实只用放n个。那么就容易很多了。
可以发现 不管怎么放 所有列/所有行 都必须得放有。
那么最多只有n-1个pairs 当k==0时 容易发现是一个n!.
总之还是迷了很久。一道比较锻炼我当前水平的计数题。
有k行空着 比较显然 因为一旦多加一对 那么两个棋子就会放在同一行。
考虑计算出方案数 容易发现一开始的方案数为 \(C(n,k)\cdot (n-k)^n\)必然会有不合法的情况。
因为此时的含义是 至少有k行空着的方案数。需要-掉k+1行空着-k+2行空着...的方案数。
我们显然无法直接求出恰好有k+1行空着的方案数。如果可以直接求出恰好k行空着的就行辣。
考虑容斥 值得一提的是这样容斥会出错容斥系数不对。
如果至少k+1行空着的方案数也不对因为刚才的方案数再乘上后面的乘积营造了多种局面下的k+1行空着甚至一些局面是重复的。
而直接减掉只能减掉一部分。
做法:在原来的情况下进行容斥 在选出k个空行的时候考虑此时多选出了一行空着的-多选出两行空着的+...
这样容斥的系数就对了。
const ll MAXN=200010;
ll n,k;
ll fac[MAXN],inv[MAXN];
inline ll C(ll a,ll b){if(a<b)return 0;return fac[a]*inv[b]%mod*inv[a-b]%mod;}
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
signed main()
{
freopen("1.in","r",stdin);
get(n);get(k);
if(k>=n){puts("0");return 0;}
fac[0]=1;
rep(1,n,i)fac[i]=fac[i-1]*i%mod;
inv[n]=ksm(fac[n],mod-2);
fep(n-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
if(!k)putl(fac[n]);
else
{
ll ans=0;
rep(k,n,i)
{
ans=(ans+(((k-i)&1)?-1:1)*C(n,k)*C(n-k,i-k)%mod*ksm(n-i,n))%mod;
}
putl((ans+mod)%mod*2%mod);
}
return 0;
}
CF EC 86 E Placing Rooks 组合数学的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- CF 1400G.Mercenaries 题解【SOSDP 组合数学】
CF 1400G.Mercenaries 题意: 有\(n\)个佣兵,问雇佣至少一名雇佣兵且满足下述条件的方案数 如果雇佣第\(i\)个佣兵必须要求最终雇佣的总人数\(x\)满足\(l_i\le x\ ...
- 【CF】86 B. Petr#
误以为是求满足条件的substring总数(解法是KMP分别以Sbeg和Send作为模式串求解满足条件的position,然后O(n^2)或者O(nlgn)求解).后来发现是求set(all vali ...
- CF EC 87 div2 1354 C2 Not So Simple Polygon Embedding 计算几何 结论
LINK:Not So Simple Polygon Embedding 搞了好久终于搞会了. 错误原因 没找到合适算边长的方法 要么就是边长算的时候算错了. 几何学的太差了 最后虽然把十边形的和六边 ...
- FF D8 FF FE 00 24 47 00转图片
String[] img = "FF D8 FF FE 00 24 47 00 9D 0C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 F0 0 ...
- Linux CA证书与https讲解
1.什么是CA证书. ◇ 普通的介绍信 想必大伙儿都听说过介绍信的例子吧?假设 A 公司的张三先生要到 B 公司去拜访,但是 B 公司的所有人都不认识他,他咋办捏?常用的办法是带公司开的一张介绍信,在 ...
- 数字麦克风PDM信号采集与STM32 I2S接口应用(三)
本文是数字麦克风笔记文章的数据处理篇. 读取数字麦克风的信号,需要嵌入式驱动和PC应用的结合,驱动负责信号采集,应用代码负责声音分析. 一般而言,在完成特征分析和实验之后,把优化过的代码固化到嵌入式端 ...
- Corrupt JPEG data: 1 extraneous bytes before marker 0xd9 JPEG datastream contains no image
Corrupt JPEG data: 1 extraneous bytes before marker 0xd9 JPEG datastream contains no image 对比发送时的全部数 ...
- jpeg相关知识
一.jpeg介绍 JPEG 是 Joint Photographic Exports Group 的英文缩写,中文称之为联合图像专家小组.该小组隶属于 ISO 国际标准化组织,主要负责定制静态数字图像 ...
随机推荐
- js实现json格式化,以及json校验工具的简单实现
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, ...
- 前端性能优化_css加载会造成哪些阻塞现象?
css的加载是不会阻塞DOM的解析,但是会阻塞DOM的渲染,会阻塞link后面js语句的执行.这是由于浏览器为了防止html页面的重复渲染而降低性能,所以浏览器只会在加载的时候去解析dom树,然后等在 ...
- 移动端web app要使用rem实现自适应布局:font-size的响应式
关于webAPP的开发最主要解决的就是“自适应自适应布局”.常规的适配有很多做法,例如:流式布局.限死宽度等,但是这些方案都不是最佳的解决方法,而最满足设计需要的是: 元素可以根据屏幕大小而等比列变 ...
- 整理一下CSS最容易躺枪的二十规则,大家能躺中几条?
整理一下CSS最容易躺枪的二十规则,大家能躺中几条? 转载:API中文网 一.float:left/right 或者 position: absolute 后还写上 display:block? 二. ...
- 51Nod 1534 棋子游戏 题解
题目 波雷卡普和瓦西里喜欢简单的逻辑游戏.今天他们玩了一个游戏,这个游戏在一个很大的棋盘上进行,他们每个人有一个棋子.他们轮流移动自己的棋子,波雷卡普先开始.每一步移动中,波雷卡普可以将他的棋子从(x ...
- Django---进阶2
目录 数据的查,改,删 django orm中如何创建表关系 django请求生命周期流程图(必会) 路由层 路由匹配 无名分组 有名分组 无名有名是否可以混合使用 反向解析 作业 数据的查,改,删 ...
- day78 通过axios实现数据请求
目录 一.axios提供http请求的两个常用方法 二.json 1.json数据的语法 2 js中提供json数据转化的方式 三 ajax 1 数据接口 2 ajax在jq和vue的不同使用 3 同 ...
- 从零开始学Electron笔记(四)
在之前的文章我们介绍了一下Electron的这个remote模块,接下来我们继续说一下Electron的右键菜单的制作. 在我们日常我们使用的软件中都会存在右键菜单的情况,比如我们用到的浏览器,开发所 ...
- Scala 基础(十):Scala 函数式编程(二)基础(二)过程、惰性函数、异常
1 过程 将函数的返回类型为Unit的函数称之为过程(procedure),如果明确函数没有返回值,那么等号可以省略 注意事项和细节说明 1)注意区分: 如果函数声明时没有返回值类型,但是有 = 号, ...
- MYSQL 之 JDBC(十二): 处理Blob
LOB,即Large Objects(大对象),是用来存储大量的二进制和文本数据的一种数据类型 LOB分为两种内省:内部LOB和外部LOB 内部LOB将数据以字节流的形式存储在数据库的内部.因而内部L ...