883. Projection Area of 3D Shapes
问题
NxN个格子中,用1x1x1的立方体堆叠,grid[i][j]表示坐标格上堆叠的立方体个数,求三视图面积。
Input: [[1,2],[3,4]]
Output: 17
Explanation: 见下图
思路
对于俯视图,只要一个格子有值,面积值就加1。
对于正视图(面朝x轴),对于某一个x,在y轴方向上拥有的最高grid值,表示,该x顺着y轴看过去看到的面积值。
对于侧视图(面朝y轴),对于某一个y,在x轴方向上拥有的最高grid值,表示,该y顺着y轴看过去看到的面积值。
把这些面积值加起来即可。
时间复杂度O(n^2,空间复杂度O(1)
代码
class Solution(object):
def projectionArea(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
s = 0
n = len(grid)
for i in range(n):
best_row = 0
best_col = 0
for j in range(n):
if(grid[i][j] > 0):
s += 1
best_row = max(best_row, grid[i][j])
best_col = max(best_col, grid[j][i])
s += best_row + best_col
return s
类似题目
892. Surface Area of 3D Shapes
883. Projection Area of 3D Shapes的更多相关文章
- 【Leetcode_easy】883. Projection Area of 3D Shapes
problem 883. Projection Area of 3D Shapes 参考 1. Leetcode_easy_883. Projection Area of 3D Shapes; 完
- [LeetCode] 883. Projection Area of 3D Shapes 三维物体的投影面积
On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes. Each ...
- LeetCode 883 Projection Area of 3D Shapes 解题报告
题目要求 On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes. ...
- [LeetCode&Python] Problem 883. Projection Area of 3D Shapes
On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes. Each ...
- 【LeetCode】883. Projection Area of 3D Shapes 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学计算 日期 题目地址:https://leetc ...
- 【leetcode】883. Projection Area of 3D Shapes
题目如下: 解题思路:分别求出所有立方体的个数,各行的最大值之和,各列的最大值之和.三者相加即为答案. 代码如下: class Solution(object): def projectionArea ...
- [Swift]LeetCode883. 三维形体投影面积 | Projection Area of 3D Shapes
On a N * N grid, we place some 1 * 1 * 1 cubes that are axis-aligned with the x, y, and z axes. Each ...
- Leetcode883.Projection Area of 3D Shapes三维形体投影面积
在 N * N 的网格中,我们放置了一些与 x,y,z 三轴对齐的 1 * 1 * 1 立方体. 每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上. 现在,我们查 ...
- 892. Surface Area of 3D Shapes
问题 NxN个格子中,用1x1x1的立方体堆叠,grid[i][j]表示坐标格上堆叠的立方体个数,求这个3D多边形的表面积. Input: [[1,2],[3,4]] Output: 34 思路 只要 ...
随机推荐
- editplus修改配置文件保存位置
虚拟桌面默认保存位置为:
- Nginx(二)-- 配置文件之虚拟主机配置
1.配置文件与解释 #user nobody; worker_processes 1; # 设置工作子进程,默认是1个工作子进程,可以修改,一般设置为CPU的总核数 #error_log logs/e ...
- SGA内存的优化
查看SGA有关的系统参数即介绍 SQL> show parameter sga NAME TYPE VALUE ------------------------------------ ---- ...
- RecyclerView的通用适配器,和滚动时不加载图片的封装
对于RecyclerView我们需要使用RecyclerAdapter,使用方式与ListViewAdapter类似,具体代码大家可以在网上搜索,这里就只教大家使用封装后的简洁RecyclerAdap ...
- C文件流
在Linux系统中,系统默认认为每个进程打开了3个文件,即每个进程默认可以操作3 个流,即标准输入了流(/dev/stdin),标准输出流(/dev/stdout),标准错误输出流(/dev/stde ...
- Ubuntu13.10:[3]如何开启SSH SERVER服务
作为最新版本的UBUNTU系统而言,开源,升级全部都不在话下.传说XP已经停止补丁更新了,使用UBUNTU也是一个很好的选择.ubuntu默认安装完成后只有ssh-agent(客户端模式),宾哥百度经 ...
- js 判断数据类型的几种方法
判断js中的数据类型有一下几种方法:typeof.instanceof. constructor. prototype. $.type()/jquery.type(),接下来主要比较一下这几种方法的异 ...
- FTP新建文件夹访问
今天在远程服务器上添加了文件夹,本来还想着FTP打开看看,结果竟然发现没有这个文件夹访问 想了一下,感觉应该是FTP访问的文件设置,只有FTP设置了的文件夹才能有显示
- MYSQL系列之(二)
上一篇文章讲的是mysql的基本操作,这一篇会有一点难以理解,本节主要内容mysql视图,存储过程,函数,事务,触发器,以及动态执行sql 视图view 视图是一个虚拟表,其内容由查询定义.同真实的表 ...
- 【LeetCode】Pascal's Triangle II (杨辉三角)
Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3 ...