这题说的是给了n(14)个点,每个点都以他 为根的最大可容的孩子个数和最小的可溶孩子个数L[i] ,R[i]

问这n个点形成一棵树有多少种形态

我们让 dp[i][S] 表示 一 i为根节点 的 拥有孩子S(二进制数)状态的 方案数 , sub[S] , 表示 以 S 状态表示的 森林的 方案数, sum[S] 表示 一S 状态的 有根树 的 方案数

可以知道

dp[i][S] = sub[ S^(1<<i) ] { L[i]<=|S|<=R[i]   }

sum[S] = dp[i][S] { i=0,1,2,3,,,n-1 | S&1<<i!=0  }

sub[S] = sub[S] +  sum[H]*sub[S^H]{ H 为s 的 子集 ,然后 先固定 S 中第一个不是点 不是0 的一定要在 H 中, 这样是 为了保证 不会出现一个点被算了两次,可能这个点在枚举时存在对称性 , 我们一旦确定一个点在那个位置就可以避免这种情况的出现 }

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
using namespace std;
typedef long long ll;
const int mod = ;
int dp[][<<];
int sum[<<];
int sub[<<];
int L[],R[],n;
int cal(int S){
int num=;
for(int i=; i<n; ++i)
if(S&(<<i)) num++;
return num;
}
int main()
{
int cas;
scanf("%d",&cas);
for(int cc= ; cc<=cas; ++cc){
scanf("%d",&n);
for(int i=; i<n; ++i)
scanf("%d%d",&L[i],&R[i]);
for(int i=; i<n; ++i){
dp[i][]=;
}
sum[]=; sub[]=;
for(int S=; S<(<<n); ++S){
sum[S]=; sub[S]=;
int ge = cal(S);
for(int i =; i<n; ++i){
dp[i][S]=;
if( ( S&(<<i) )!= && L[i]<=ge&&R[i]>=ge ){
dp[i][S]= sub[S^(<<i)];
sum[S]= (dp[i][S]+sum[S])%mod;
}
}
int j=;
for( j=; j<n; ++j ) if(S&(<<j)) break; for(int H=S; H>; H=S&(H-)){
if((H&(<<j))==) continue;
ll a = sum[H];
ll b = sub[S^H];
sub[S]= ( sub[S] + a*b%mod )%mod;
}
}
int ans=;
for(int i=; i<n; ++i) ans=(ans+ dp[i][(<<n)-])%mod;
printf("%d\n",ans);
} return ;
}

hdu 5103 状态压缩dp的更多相关文章

  1. HDU 1074 (状态压缩DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:有N个作业(N<=15),每个作业需耗时,有一个截止期限.超期多少天就要扣多少 ...

  2. HDU 3341 状态压缩DP+AC自动机

    题目大意: 调整基因的顺序,希望使得最后得到的基因包含有最多的匹配串基因,使得所能达到的智商最高 这里很明显要用状态压缩当前AC自动机上点使用了基因的情况所能达到的最优状态 我最开始对于状态的保存是, ...

  3. hdu 4284 状态压缩dp

    题意: 有N 个点的无向图,要去其中 h个地点做事,做事需要先办理护照,之后可以挣一定数量的钱,知道了一开始有的总钱数,和 一些城市之间           道路的花费,问可不可以在 指定的 h 个城 ...

  4. hdu 2167 状态压缩dp

    /* 状态转移方程:dp[i][j]=Max(dp[i][j],dp[i-1][k]+sum[i][j]); */ #include<stdio.h> #include<string ...

  5. HDU 4856 (状态压缩DP+TSP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4856 题目大意:有一个迷宫.迷宫里有些隧道,每个隧道有起点和终点,在隧道里不耗时.出隧道就耗时,你的 ...

  6. HDU 4640 状态压缩DP 未写完

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4640 解题思路: 首先用一个简单的2^n*n的dp可以求出一个人访问一个给定状态的最小花费,因为这i个 ...

  7. 2016"百度之星" - 初赛(Astar Round2A)1002 / HDU 5691 状态压缩DP

    Sitting in Line Problem Description   度度熊是他同时代中最伟大的数学家,一切数字都要听命于他.现在,又到了度度熊和他的数字仆人们玩排排坐游戏的时候了.游戏的规则十 ...

  8. HDU 5067 (状态压缩DP+TSP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5067 题目大意:蓝翔挖掘机挖石子.把地图上所有石子都运回起点,问最少耗时. 解题思路: 首先得YY出 ...

  9. hdu 4539(状态压缩dp)

    题意:曼哈顿距离是指:|x1-x2|+|y1-y2|,只要知道这个概念题意就懂了. 分析:这道题与前面做的几道题有所不同,因为当前行不仅与前一行有关,而且与前两行有关,所以我们开数组的时候还要记录前两 ...

随机推荐

  1. laravel 强大的关联模型

    内容比较多,不总结了,直接看学院君的译文吧,已经写得很详细了 传送门:http://laravelacademy.org/post/6191.html PS1: laravel的关联模型并不是遍历一次 ...

  2. Linux 远程同步:rsync

    rsync 简介: (1) rsync 是一个远程数据同步工具,可通过 LAN/WAN 快速同步多台主机间的文件(2) rsync 使用所谓的“rsync算法”来使本地和远程两个主机之间的文件达到同步 ...

  3. CALayer的position,anchorPoint属性 与UIView的frame 属性

    彻底理解CALayer的position,anchorPoint属性 与UIView的frame 属性 一.position,anchorPoint两者都是CALayer的属性,都是CGPoint点 ...

  4. Django restframwork

    REST介绍 全称Representational State Transfer,即表现层状态转换,如果一个架构符合REST原则,我们就称他为Restfull架构,其主要包括如下方面: 资源Resou ...

  5. LNMP 配置二级域名

    准备: 已备案的主域名,例如:www.test.com 拥有自己的服务器 服务器环境 LNMP 目标: 配置一个二级域名: bbs.test.com 1 登录域名后台(阿里为例) 记录类型: A 主机 ...

  6. linux常用的一些访问目录

    救命三键(Ctrl+Alt+Delete)  /var/log     如果是网络服务的问题时,请到 这个目录里头去查阅一下 log file (登录档): /etc/rc.local    修改挂载 ...

  7. Eclipse 真机调试检测不到手机解决方案

    想用Eclipse真机调试,但是死活检测不到手机. 手机已经打开了usb调试模式. 开始用的华为Mate9,后面试了下小米,都不行. 在网上搜了一堆,什么安全驱动.adb占用.删除360手机助手.修改 ...

  8. shell批量重命令文件脚本

    批量重命名脚步记录,以备用 假如有一批11.txt 12.txt 13,txt 14.txt 15.txt脚步要要重命名为1.txt 2.txt 3.txt .... 脚本如下: #!/bin/bas ...

  9. 常用的sass编译库

    @charset "UTF-8"; /*引进图片合并给一个变量(后面会用到这个变量)*/ $sprites:sprite-map("pwd/*.png",$sp ...

  10. C++ string append方法的常用用法

    append函数是向string的后面追加字符或字符串. 1).向string的后面加C-string string s = “hello “; const char *c = “out here “ ...