Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.

思路I: 选择排序

每次都比较各个list的头指针所指的val,取最小的那个。时间复杂度O(n*k)

class Solution {
public:
ListNode *mergeKLists(vector &lists) {
if(lists.empty()) return NULL;
ListNode *head = new ListNode(INT_MIN); //创建头指针,不指向任何List元素;最后返回的是head->next
head->next = lists[];
ListNode *p1;
ListNode *p2;
ListNode *tmp;
for(int i = ; i< lists.size(); i++)
{
p1 = head;
p2 = lists[i];
while(p1->next && p2)
{
if(p1->next->val <= p2->val) p1 = p1->next;
else
{
tmp = p1->next;
p1->next = p2;
p1 = p1->next;
p2 = p2->next;
p1->next = tmp;
}
}
if(p2)
{
p1->next = p2;
}
}
return head->next;
}
};

Result:Time Limit Exceeded

思路II: 最小堆。

时间复杂度:堆排序其实也是一种选择排序。只不过直接选择排序中,为了从R[1...n]中选择最大记录,需比较n-1次,然后从R[1...n-2]中选择最大记录需比较n-2次。事实上这n-2次比较中有很多已经在前面的n-1次比较中已经做过,而树形选择排序恰好利用树形的特点保存了部分前面的比较结果,因此可以减少比较次数。时间复杂度为O(nlogk)

堆排序思想参考:http://jingyan.baidu.com/article/5225f26b057d5de6fa0908f3.html

class Solution {
public:
ListNode *mergeKLists(vector<ListNode *> &lists) {
// 使用堆排序,
// 1. 选出每个链表的头来插入小顶堆中,
// 2. 再把堆顶接入合并链表中,
// 3. 被选出的指针后移再加入小顶堆中,回到2
// 4. 最后所有链表都为空时,返回合并链表的头指针
if(lists.empty()) return nullptr;
vector<ListNode* > heap;
heap.push_back(); //padding
// 1. 选出每个链表的头来插入小顶堆中,
for(int i = ; i != lists.size(); i ++){
if(lists[i]) heap.push_back(lists[i]);
}
makeHeap(heap);
// 2. 再把堆顶接入合并链表中,
ListNode head(-); // 合并链表的表头
ListNode* p = &head;
while(heap.size()>){
auto minNode = heap[];
p->next = minNode; // 接入链表
p = p->next;
// 3. 被选出的指针后移再加入小顶堆中,回到2
auto next = minNode->next;
if(next) {
heap[] = next;
}else{
swap(heap[], heap[heap.size()-]);
heap.pop_back();
}
minHeap(heap, );//加入新元素到堆顶后,自上向下调整
}
// 4. 最后所有链表都为空时,返回合并链表的头指针
return head.next;
}
// 建立小顶堆
// 自底向上
void makeHeap(vector<ListNode*> &heap){
// 从最后一个元素的父节点开始建立小顶堆
for(int i = (heap.size()-)/; i > ; i --){
minHeap(heap, i);
}
}
// 小顶堆,以第i个元素为根建立小顶堆
//位置从1开始,取元素时记得-1
// 自顶向下
void minHeap(vector<ListNode*> &heap, int i){
int l = i*;
int r = l+;
int least(i);
// 算出最小元素的位置
if((l< heap.size()) && heap[l]->val<heap[i]->val ){
// 如果没有超过边界并且左孩子比父亲小,则换
least = l;
}
if(r<heap.size() && heap[r]->val<heap[least]->val){
// 如果没有超过边界并且右孩子最小,则换
least = r;
}
if(least != i){
swap(heap[i], heap[least]);
minHeap(heap, least);//换了之后,继续向下调整
}
}
};

最小堆在C++中可以用优先队列来实现

/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/ struct cmp {
bool operator () (ListNode *a, ListNode *b) {
return a->val > b->val;
}
}; class Solution {
public:
ListNode* mergeKLists(vector<ListNode*>& lists) {
priority_queue<ListNode*,vector<ListNode*>,cmp> queue;
for (int i = ; i < lists.size(); i++) {
if (lists[i] != NULL) {
queue.push(lists[i]);
}
} ListNode *head = new ListNode(INT_MIN);
ListNode *prev = head, *temp;
while (!queue.empty()) {
temp = queue.top();
queue.pop();
prev->next = temp;
prev = prev->next; if (temp->next != NULL) {
queue.push(temp->next);
}
}
return head->next;
}
};

优先队列默认从大到小排序,即大顶堆,所以这里我们需要改成小顶堆:

1. 基本类型(例如int)都可以用greater<type>声明小顶堆优先队列:

priority_queue<int, vector<int>, greater<int>> q

2. 自定义的数据结构必须自定义比较函数(如以上代码中定义的cmp),或者自定义 > 操作:

bool operator > (ListNode* a, ListNode* b){
return a->val > b->val;
}

思路III:归并排序

初始状态:6,202,100,301,38,8,1
第一次归并后:{6,202},{100,301},{8,38},{1},比较次数:3;
第二次归并后:{6,100,202,301},{1,8,38},比较次数:4;
第三次归并后:{1,6,8,38,100,202,301},比较次数:4;
reference: http://baike.baidu.com/link?url=ayX3MQx_CrmcjOxkL7EKhXukLH9pJKJsD1XDMaP6eQwvFfc-BtnQBUTsElRafXbxqhCFOIlKC5VsL14LgjEjIK 
归并排序时间复杂度O(nlogn)
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/ class Solution {
public:
ListNode* mergeKLists(vector<ListNode*>& lists) {
if(lists.empty()) return NULL; mergeSort(lists, , lists.size()-);
return lists[];
}
void mergeSort(vector<ListNode*>& lists, int start, int end){
if(start==end) return;
int mid = (start + end) >> ;
mergeSort(lists, start, mid);
mergeSort(lists, mid+, end);
merge(lists,start, mid+);
} void merge(vector<ListNode*>& lists, int lst1, int lst2){
ListNode* root = NULL;
ListNode* current = NULL; while(lists[lst1] && lists[lst2]){
if(lists[lst1]->val <= lists[lst2]->val){
if(!root){
root = lists[lst1];
current = root;
}
else{
current->next = lists[lst1];
current = current->next;
}
lists[lst1] = lists[lst1]->next;
}
else{
if(!root){
root = lists[lst2];
current = root;
}
else{
current->next = lists[lst2];
current = current->next;
}
lists[lst2] = lists[lst2]->next;
}
} while(lists[lst1]){
if(!root){
root = lists[lst1];
current = root;
}
else{
current->next = lists[lst1];
current = current->next;
}
lists[lst1] = lists[lst1]->next;
}
while(lists[lst2]){
if(!root){
root = lists[lst2];
current = root;
}
else{
current->next = lists[lst2];
current = current->next;
}
lists[lst2] = lists[lst2]->next;
} lists[lst1] = root;
}
};

23.Merge k Sorted Lists (Array, Queue; Sort)的更多相关文章

  1. 刷题23. Merge k Sorted Lists

    一.题目说明 这个题目是23. Merge k Sorted Lists,归并k个有序列表生成一个列表.难度为Hard,实际上并不难,我一次提交就对了. 二.我的解答 就是k路归并,思路很简单,实现也 ...

  2. [Leetcode][Python]23: Merge k Sorted Lists

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 23: Merge k Sorted Listshttps://oj.leet ...

  3. 21.Merge Two Sorted Lists 、23. Merge k Sorted Lists

    21.Merge Two Sorted Lists 初始化一个指针作为开头,然后返回这个指针的next class Solution { public: ListNode* mergeTwoLists ...

  4. 23. Merge k Sorted Lists - LeetCode

    Question 23. Merge k Sorted Lists Solution 题目大意:合并链表数组(每个链表中的元素是有序的),要求合并后的链表也是有序的 思路:遍历链表数组,每次取最小节点 ...

  5. 蜗牛慢慢爬 LeetCode 23. Merge k Sorted Lists [Difficulty: Hard]

    题目 Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity ...

  6. [LeetCode] 23. Merge k Sorted Lists ☆☆☆☆☆

    转载:https://leetcode.windliang.cc/leetCode-23-Merge-k-Sorted-Lists.html 描述 Merge k sorted linked list ...

  7. [LeetCode] 23. Merge k Sorted Lists ☆☆

    Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 解 ...

  8. [LeetCode]23. Merge k Sorted Lists合并K个排序链表

    Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. E ...

  9. [LeetCode] 23. Merge k Sorted Lists 合并k个有序链表

    Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. E ...

随机推荐

  1. New Concept English Two 4

    听力口语是一起的,其中,受中国英语发音的影响,我们的听力识别度会很差,歪果仁发的地道英语,极有可能我们听不懂.这涉及到:自然拼读法的训练,还有纠音练习.当然,听简单的美剧的音频,然后练习是最好的. 新 ...

  2. Editor does not contain a main type

    1.错误描述 2.错误原因 在含有main方法的类中,运行应用程序,却提示这个错误:编译器不包含main类型 3.解决办法 (1)选择该Java类上一级文件,build path--->use ...

  3. Zabbix(Windows)

    Windows环境下只能装客户端, 而不能装服务端; zabbix官网 https://www.zabbix.com/ 下载并解压到本地 修改配置文件: # Hostname=Hostname=DES ...

  4. SVM大致思路整理

    (一)线性可分 我们忽略建立目标函数的过程,直接写出目标函数. 原问题: 首先,我们得到了目标函数: 这是一个凸优化问题,直接可以用软件可以求解: 对偶问题: 原问题根据一系列的变换,可写成: 满足某 ...

  5. cratedb 集群搭建说明

    此为搭建说明,实际上搭建过es 集群的都是可以的,和es 基本一样 配置文件 crate.yaml 参考集群架构图 集群名称 cluster.name: my_cluster 每个node节点名称 如 ...

  6. mysql having,group by查询去除重复记录

    http://m.jb51.net/article/39302.htm 可以这样去理解group by和聚合函数 http://www.cnblogs.com/wuguanglei/p/4229938 ...

  7. bzoj2660最多的方案

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2660 当然可以看出  选了第 i 个斐波那契数<=>选了第 i - 1 和第 i ...

  8. PhoneGap 获得APP的VersionName

    1.首先安装cordova-plugin-app-version cordova plugin add cordova-plugin-app-version 2. 调用方法如下 function ge ...

  9. 两个不错点电影ED2000资源

    http://simplecd.me/ http://www.ed2000.com/ http://www.2tu.cc/ http://www.mp4ba.com/ http://www.ddyy. ...

  10. java 方法(函数)

    所谓方法,就是用来解决一类问题的代码的有序组合,是一个功能模块. 一般情况下,定义一个方法的语法是: 其中: 1. 访问修饰符:方法允许被访问的权限范围, 可以是 public.protected.p ...