23.Merge k Sorted Lists (Array, Queue; Sort)
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
思路I: 选择排序
每次都比较各个list的头指针所指的val,取最小的那个。时间复杂度O(n*k)
class Solution {
public:
ListNode *mergeKLists(vector &lists) {
if(lists.empty()) return NULL;
ListNode *head = new ListNode(INT_MIN); //创建头指针,不指向任何List元素;最后返回的是head->next
head->next = lists[];
ListNode *p1;
ListNode *p2;
ListNode *tmp;
for(int i = ; i< lists.size(); i++)
{
p1 = head;
p2 = lists[i];
while(p1->next && p2)
{
if(p1->next->val <= p2->val) p1 = p1->next;
else
{
tmp = p1->next;
p1->next = p2;
p1 = p1->next;
p2 = p2->next;
p1->next = tmp;
}
}
if(p2)
{
p1->next = p2;
}
}
return head->next;
}
};
Result:Time Limit Exceeded
思路II: 最小堆。
时间复杂度:堆排序其实也是一种选择排序。只不过直接选择排序中,为了从R[1...n]中选择最大记录,需比较n-1次,然后从R[1...n-2]中选择最大记录需比较n-2次。事实上这n-2次比较中有很多已经在前面的n-1次比较中已经做过,而树形选择排序恰好利用树形的特点保存了部分前面的比较结果,因此可以减少比较次数。时间复杂度为O(nlogk)
堆排序思想参考:http://jingyan.baidu.com/article/5225f26b057d5de6fa0908f3.html
class Solution {
public:
ListNode *mergeKLists(vector<ListNode *> &lists) {
// 使用堆排序,
// 1. 选出每个链表的头来插入小顶堆中,
// 2. 再把堆顶接入合并链表中,
// 3. 被选出的指针后移再加入小顶堆中,回到2
// 4. 最后所有链表都为空时,返回合并链表的头指针
if(lists.empty()) return nullptr;
vector<ListNode* > heap;
heap.push_back(); //padding
// 1. 选出每个链表的头来插入小顶堆中,
for(int i = ; i != lists.size(); i ++){
if(lists[i]) heap.push_back(lists[i]);
}
makeHeap(heap);
// 2. 再把堆顶接入合并链表中,
ListNode head(-); // 合并链表的表头
ListNode* p = &head;
while(heap.size()>){
auto minNode = heap[];
p->next = minNode; // 接入链表
p = p->next;
// 3. 被选出的指针后移再加入小顶堆中,回到2
auto next = minNode->next;
if(next) {
heap[] = next;
}else{
swap(heap[], heap[heap.size()-]);
heap.pop_back();
}
minHeap(heap, );//加入新元素到堆顶后,自上向下调整
}
// 4. 最后所有链表都为空时,返回合并链表的头指针
return head.next;
}
// 建立小顶堆
// 自底向上
void makeHeap(vector<ListNode*> &heap){
// 从最后一个元素的父节点开始建立小顶堆
for(int i = (heap.size()-)/; i > ; i --){
minHeap(heap, i);
}
}
// 小顶堆,以第i个元素为根建立小顶堆
//位置从1开始,取元素时记得-1
// 自顶向下
void minHeap(vector<ListNode*> &heap, int i){
int l = i*;
int r = l+;
int least(i);
// 算出最小元素的位置
if((l< heap.size()) && heap[l]->val<heap[i]->val ){
// 如果没有超过边界并且左孩子比父亲小,则换
least = l;
}
if(r<heap.size() && heap[r]->val<heap[least]->val){
// 如果没有超过边界并且右孩子最小,则换
least = r;
}
if(least != i){
swap(heap[i], heap[least]);
minHeap(heap, least);//换了之后,继续向下调整
}
}
};
最小堆在C++中可以用优先队列来实现
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/ struct cmp {
bool operator () (ListNode *a, ListNode *b) {
return a->val > b->val;
}
}; class Solution {
public:
ListNode* mergeKLists(vector<ListNode*>& lists) {
priority_queue<ListNode*,vector<ListNode*>,cmp> queue;
for (int i = ; i < lists.size(); i++) {
if (lists[i] != NULL) {
queue.push(lists[i]);
}
} ListNode *head = new ListNode(INT_MIN);
ListNode *prev = head, *temp;
while (!queue.empty()) {
temp = queue.top();
queue.pop();
prev->next = temp;
prev = prev->next; if (temp->next != NULL) {
queue.push(temp->next);
}
}
return head->next;
}
};
优先队列默认从大到小排序,即大顶堆,所以这里我们需要改成小顶堆:
1. 基本类型(例如int)都可以用greater<type>声明小顶堆优先队列:
priority_queue<int, vector<int>, greater<int>> q
2. 自定义的数据结构必须自定义比较函数(如以上代码中定义的cmp),或者自定义 > 操作:
bool operator > (ListNode* a, ListNode* b){
return a->val > b->val;
}
思路III:归并排序
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/ class Solution {
public:
ListNode* mergeKLists(vector<ListNode*>& lists) {
if(lists.empty()) return NULL; mergeSort(lists, , lists.size()-);
return lists[];
}
void mergeSort(vector<ListNode*>& lists, int start, int end){
if(start==end) return;
int mid = (start + end) >> ;
mergeSort(lists, start, mid);
mergeSort(lists, mid+, end);
merge(lists,start, mid+);
} void merge(vector<ListNode*>& lists, int lst1, int lst2){
ListNode* root = NULL;
ListNode* current = NULL; while(lists[lst1] && lists[lst2]){
if(lists[lst1]->val <= lists[lst2]->val){
if(!root){
root = lists[lst1];
current = root;
}
else{
current->next = lists[lst1];
current = current->next;
}
lists[lst1] = lists[lst1]->next;
}
else{
if(!root){
root = lists[lst2];
current = root;
}
else{
current->next = lists[lst2];
current = current->next;
}
lists[lst2] = lists[lst2]->next;
}
} while(lists[lst1]){
if(!root){
root = lists[lst1];
current = root;
}
else{
current->next = lists[lst1];
current = current->next;
}
lists[lst1] = lists[lst1]->next;
}
while(lists[lst2]){
if(!root){
root = lists[lst2];
current = root;
}
else{
current->next = lists[lst2];
current = current->next;
}
lists[lst2] = lists[lst2]->next;
} lists[lst1] = root;
}
};
23.Merge k Sorted Lists (Array, Queue; Sort)的更多相关文章
- 刷题23. Merge k Sorted Lists
一.题目说明 这个题目是23. Merge k Sorted Lists,归并k个有序列表生成一个列表.难度为Hard,实际上并不难,我一次提交就对了. 二.我的解答 就是k路归并,思路很简单,实现也 ...
- [Leetcode][Python]23: Merge k Sorted Lists
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 23: Merge k Sorted Listshttps://oj.leet ...
- 21.Merge Two Sorted Lists 、23. Merge k Sorted Lists
21.Merge Two Sorted Lists 初始化一个指针作为开头,然后返回这个指针的next class Solution { public: ListNode* mergeTwoLists ...
- 23. Merge k Sorted Lists - LeetCode
Question 23. Merge k Sorted Lists Solution 题目大意:合并链表数组(每个链表中的元素是有序的),要求合并后的链表也是有序的 思路:遍历链表数组,每次取最小节点 ...
- 蜗牛慢慢爬 LeetCode 23. Merge k Sorted Lists [Difficulty: Hard]
题目 Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity ...
- [LeetCode] 23. Merge k Sorted Lists ☆☆☆☆☆
转载:https://leetcode.windliang.cc/leetCode-23-Merge-k-Sorted-Lists.html 描述 Merge k sorted linked list ...
- [LeetCode] 23. Merge k Sorted Lists ☆☆
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. 解 ...
- [LeetCode]23. Merge k Sorted Lists合并K个排序链表
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. E ...
- [LeetCode] 23. Merge k Sorted Lists 合并k个有序链表
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity. E ...
随机推荐
- Mysql查询正在运行的事务以及杀掉它
查询 正在执行的事务:SELECT * FROM information_schema.INNODB_TRX 根据这个事务的线程ID(trx_mysql_thread_id): 可以使用mysql命令 ...
- Codeforces 148B: Escape
题目链接:http://codeforces.com/problemset/problem/148/B 题意:公主从龙的洞穴中逃跑,公主的速度为vp,龙的速度为vd,在公主逃跑时间t时,龙发现公主逃跑 ...
- DFS&&BFS
DFS DFS搜索是按照深度的方向搜索,它类似于树的先根遍历,是树的先根遍历的推广. 1.从图的某个顶点v0出发,首先访问v0, 2.找出刚访问过的顶点的第一个未被访问过的邻接点,然后访问该结点,以该 ...
- 洛谷2148(SDOI2009) E&D
题目:https://www.luogu.org/problemnew/show/P2148 SG函数+找规律. 普通地用SG函数做. 每两堆是一个独立问题.因为虽然有可能一个人在同一组里连续操作2次 ...
- java 题
[程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程序分析: 兔子的规律为数列1 ...
- oracle 归档日志总结
Oracle 归档模式和非归档模式 归档模式和非归档模式 在DBA部署数据库之初,必须要做出的最重要决定之一就是选择归档模式(ARCHIVELOG)或者非 归档模式(NOARCHIVELOG )下运行 ...
- 【linux】U盘安装启动出现press the enter key to begin the installation process 就不动弹了
今天在物理机上安装centOS6.5 64bit 系统的时候,出现了U盘安装启动出现press the enter key to begin the installation process 就不动 ...
- LCD RGB 控制技术 时钟篇(下)
我们先回顾一下之前的典型时序图 在这个典型的时序图里面,除了上篇博文讲述的HSYNC VSYNC VDEN VCLK这几信号外,我们还能看见诸如HSPW. VSPW,HBPD. HFPD,VBPD. ...
- memcached内存管理机制分析
memached是高性能分布式内存对象系统,通过在内存中存储数据对象来减少对磁盘的数据读取次数,提高服务速度. 从业务需求出发.我们通过一条命令(如set)将一条键值对(key,value)插入mem ...
- Java 理解泛型的基本含义
Java 泛型 Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型. 泛型的本质是参数化类型,也就是说所 ...