题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3328

单位根反演主要就是有

\( [k|n] = \frac{1}{k}\sum\limits_{i=0}^{k-1}w_{k}^{i*n} \)

如果 k | n ,转 n 下就会是 1 ;不然用等比数列求和公式可知是 0 。

一般是构造一个 \( f(x) = ( 1+x )^n \) 之类的,来求含有组合数的式子。比如

             \( \sum\limits_{i=0}^{n}C_{n}^{i*k} = \sum\limits_{i=0}^{n}C_{n}^{i}[ i | k ] \)

               \( = \frac{1}{k}\sum\limits_{i=0}^{n}C_{n}^{i}\sum\limits_{j=0}^{k-1}w_{k}^{j*i} \)

               \( = \frac{1}{k}\sum\limits_{j=0}^{k-1}\sum\limits_{i=0}^{n}C_{n}^{i}w_{k}^{j*i} \)

               \( = \frac{1}{k}\sum\limits_{j=0}^{k-1}(1+w_{k}^{j})^n \)

所以设 \( f(x) = ( 1+x )^n \) ,求 k 次 \( f( w_{k}^{j} ) \) 就行。

对于这道题,为了凑一个二项式的形式,把 \( F[i] \) 看作斐波那契递推矩阵 A 的 \( A^{i}[0][0] \) ,就有

\( ans = \frac{1}{k}\sum\limits_{j=0}^{k-1}\sum\limits_{i=0}^{n}C_{n}^{i}A^{i}w_{k}^{j*i} \)

有两个 i 次却没有 n-i 次,不能直接套。那个 \( w_{k}^{j*i} \) 的 \( w_{k}^{j} \) 与 i 无关,所以设 \( f(x) \) 的时候考虑把 \( w_{k}^{j} \) 作为 \( x \) 。

如果 \( f(x) = ( A+I*x )^n \) ,那么 \( f( w_{k}^{j} ) = \sum\limits_{i=0}^{n}C_{n}^{i}A^{i}w_{k}^{j*(n-i)} \)

想把 \( w_{k}^{j*(n-i)} \) 变成 \( w_{k}^{j*i} \) ,只要令 \( f(x) = x^{-n} ( A+I*x )^n \) ,然后求 \( f( w_{k}^{-j} ) \) 即可。

注意 n 是 long long 。

找原根是枚举 phi( mod ) 的质因子,然后看 \( g^{\frac{phi(mod)}{pri}} \) 。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=2e4+,K=;
ll n;int k,mod,g,wn;
void upd(int &x){x>=mod?x-=mod:;}
int pw(int x,int k)
{int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;}
void fnd_g()
{
int pri[K],cnt=,p=mod-,d=p;////p=phi(mod)=mod-1!!
for(int i=;i*i<=d;i++)
if(d%i==)
{pri[++cnt]=i;while(d%i==)d/=i;}
if(d>)pri[++cnt]=d;
for(g=;;g++)
{
bool flag=;
for(int i=;i<=cnt;i++)if(pw(g,p/pri[i])==){flag=;break;}
if(flag)break;
}
}
struct Mtr{
int a[][];
Mtr(){memset(a,,sizeof a);}
Mtr operator* (const Mtr &b)const
{
Mtr c;
for(int i=;i<=;i++)
for(int k=;k<=;k++)
for(int j=;j<=;j++)
c.a[i][j]=(c.a[i][j]+(ll)a[i][k]*b.a[k][j])%mod;
return c;
}
}A,I;
Mtr pw(Mtr x,ll k)//ll!!!
{Mtr ret=I;while(k){if(k&)ret=ret*x;x=x*x;k>>=;}return ret;}
int main()
{
A.a[][]=A.a[][]=A.a[][]=;
I.a[][]=I.a[][]=;
int T;scanf("%d",&T);
while(T--)
{
scanf("%lld%d%d",&n,&k,&mod);fnd_g();
int ans=,wn=pw(g,(mod-)-(mod-)/k),ml=(mod--n%(mod-))%(mod-);
for(int i=,w=;i<k;i++,w=(ll)w*wn%mod)
{
Mtr t=A;t.a[][]+=w;t.a[][]+=w;upd(t.a[][]);upd(t.a[][]);
t=pw(t,n);
ans=(ans+(ll)t.a[][]*pw(w,ml))%mod;
}
ans=(ll)ans*pw(k,mod-)%mod;
printf("%d\n",ans);
}
return ;
}

bzoj 3328 PYXFIB——单位根反演的更多相关文章

  1. bzoj 3328 PYXFIB —— 单位根反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3328 单位根反演,主要用到了 \( [k|n] = \frac{1}{k} \sum\lim ...

  2. BZOJ 3328: PYXFIB 单位根反演+矩阵乘法+二项式定理

    如果写过 LJJ 学二项式那道题的话这道题就不难了. #include <bits/stdc++.h> #define ll long long #define setIO(s) freo ...

  3. BZOJ 3328: PYXFIB 解题报告

    BZOJ 3328: PYXFIB 题意 给定\(n,p,k(1\le n\le 10^{18},1\le k\le 20000,1\le p\le 10^9,p \ is \ prime,k|(p- ...

  4. bzoj 3328: PYXFIB 数论

    3328: PYXFIB Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 130  Solved: 41[Submit][Status][Discuss ...

  5. BZOJ3328 PYXFIB 单位根反演

    题意:求 \[ \sum_{i=0}^n[k|i]\binom{n}{i}Fib(i) \] 斐波那契数列有简单的矩阵上的通项公式\(Fib(n)=A^n_{1,1}\).代入得 \[ =\sum_{ ...

  6. bzoj 3328 : PYXFIB

    Discription Input 第一行一个正整数,表示数据组数据 ,接下来T行每行三个正整数N,K,P Output T行,每行输出一个整数,表示结果 Sample Input 1 1 2 3 S ...

  7. 【BZOJ3328】PYXFIB(单位根反演,矩阵快速幂)

    [BZOJ3328]PYXFIB(单位根反演,矩阵快速幂) 题面 BZOJ 题解 首先要求的式子是:\(\displaystyle \sum_{i=0}^n [k|i]{n\choose i}f_i\ ...

  8. bzoj3328: PYXFIB(单位根反演+矩阵快速幂)

    题面 传送门 题解 我们设\(A=\begin{bmatrix}1 & 1 \\ 1 & 0\end{bmatrix}\),那么\(A^n\)的左上角就是\(F\)的第\(n\)项 所 ...

  9. UOJ#450. 【集训队作业2018】复读机 排列组合 生成函数 单位根反演

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ450.html 题解 首先有一个东西叫做“单位根反演”,它在 FFT 的时候用到过: $$\frac 1 ...

随机推荐

  1. [POI2006][luogu3435] OKR-Periods of Words [kmp+next数组]

    题面 传送门 思路 先把题面转成人话: 对于给定串的每个前缀i,求最长的,使这个字符串重复两边能覆盖原前缀i的前缀(就是前缀i的一个前缀),求所有的这些"前缀的前缀"的长度和 利用 ...

  2. 20145325张梓靖 《Java程序设计》第8周学习总结

    20145325张梓靖 <Java程序设计>第8周学习总结 教材学习内容总结 Logger java.util.logging包提供了日志功能相关类与接口,使用日志的起点是logger类, ...

  3. luogu p3366 最小生成树模板

    倒腾了一个小时  自己也没去看网上的 总算自己能写出来模板了 kruskal //最小生成树 每次找最短的边 #include<bits/stdc++.h> using namespace ...

  4. NOIP 2018 兔纸旅游记

    今年是第一次参加tg呢... Day0    早上出发去中旅坐大巴,走有 lz 特色的OI比赛道路. 车上谈笑风生,看 jw 的 GDOI 的小本本. 到动车站取票入站,看 lmh 和 zn 的爱恨情 ...

  5. Easy install ryu

    参考:Ubuntu14.04安装Ryu控制器 环境:Ubuntu 14.04 64bit 使用pip安装ryu: // dependencies sudo apt-get install Python ...

  6. 图像添加logo水印函数

    <?php //图像添加水印函数 /** *为一张图片添加上一个logo水印(以保存新图片的方式实现) *@param string $picname 被缩放的处理图片源 *@param int ...

  7. 关于 Flutter的Button按钮没有高度设置

    flutter 里面 RaisedButton.FloatingActionButton.FlatButton.OutlineButton 中四个button都无高度设置,如下用RaisedButto ...

  8. angular-cli 文档

    Angular/angular-cli 原文来自:https://github.com/angular/angular-cli Angular/angular-cli 原文来自:https://git ...

  9. Miller_Rabin(米勒拉宾)素数测试

    2018-03-12 17:22:48 米勒-拉宾素性检验是一种素数判定法则,利用随机化算法判断一个数是合数还是可能是素数.卡内基梅隆大学的计算机系教授Gary Lee Miller首先提出了基于广义 ...

  10. python学习笔记(HTMLTestRunner在Py3的兼容)

    博主最近开始重构自动化框架并且向Py3上兼容 第一个问题就是生成测试报告的HTMLTestRunner,由于此模块是基于Py2开发的,这里需要修改源码 # 94行 # import StringIO ...