Zipper(动态规划)
For example, consider forming "tcraete" from "cat" and "tree":
String A: cat
String B: tree
String C: tcraete
As you can see, we can form the third string by alternating characters from the two strings. As a second example, consider forming "catrtee" from "cat" and "tree":
String A: cat
String B: tree
String C: catrtee
Finally, notice that it is impossible to form "cttaree" from "cat" and "tree".
For each data set, the line of input consists of three strings, separated by a single space. All strings are composed of upper and lower case letters only. The length of the third string is always the sum of the lengths of the first two strings. The first two
strings will have lengths between 1 and 200 characters, inclusive.
Data set n: yes
if the third string can be formed from the first two, or
Data set n: no
if it cannot. Of course n should be replaced by the data set number. See the sample output below for an example.
3
cat tree tcraete
cat tree catrtee
cat tree cttaree
Data set 1: yes
Data set 2: yes
Data set 3: no
花了好长时间终于用动态规划的方法把样例输入的结果给弄对,但是提交的时候却是WA,后来看了别人的代码发现好多都是用记忆化搜索来做的
AC代码
源代码
#include <stdio.h>
#include <string.h> int main()
{
int i, j, k, t;
int L1, L2, ok[202][202];
char str1[201], str2[201], str3[402];
/**********************
ok[i][j]为真时表示str1的前i个字符可以和str2的前j个字符
组成str3的前i+j个字符。为假时 表示不能。
***********************/ scanf("%d", &t);
for (i=1; i<=t; i++)
{
scanf("%s %s %s", str1, str2, str3);
memset(ok, 0, sizeof(ok));
L1 = strlen(str1);
L2 = strlen(str2); ok[0][0] = 1;
for (j=1; j<=L1; j++)
{
if (ok[j-1][0] == 1 && str1[j-1] == str3[j-1])
ok[j][0] = 1;
else
break;
}
for (j=1; j<=L2; j++)
{
if (ok[0][j-1] == 1 && str2[j-1] == str3[j-1])
ok[0][j] = 1;
else
break;
}
for (j=1; j<=L1; j++)
{
for (k=1; k<=L2; k++)
{
if (ok[j-1][k]==1 && str1[j-1]==str3[j+k-1] || ok[j][k-1]==1 && str2[k-1]==str3[j+k-1])
ok[j][k] = 1;
}
}
if (ok[L1][L2] == 1)
printf("Data set %d: yes\n", i);
else
printf("Data set %d: no\n", i);
}
}
WA代码
源代码
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
#include<iostream> using namespace std;
char strr1[1010];
char strr2[1010];
char strr3[1010];
int maxLen[1010][1010];
int main()
{
int n;
scanf("%d",&n);
for(int w=1; w<=n; w++)
{
scanf("%s %s %s",&strr1,&strr2,&strr3);
int length1=strlen(strr1);
int length2=strlen(strr2);
int length3=strlen(strr3);
int nTmp;
// int i,j,k;
memset(maxLen,0,sizeof(maxLen));
for(int i=0; i<=length1; i++)
{
maxLen[i][0]=0;
}
for(int k=0; k<=length3; k++)
{
maxLen[0][k]=0;
}
for(int i=1; i<=length1; i++)
{
for(int k=1; k<=length3; k++)
{
if(strr1[i-1]==strr3[k-1])
maxLen[i][k]=maxLen[i-1][k-1]+1;
else
maxLen[i][k]=max(maxLen[i-1][k],maxLen[i][k-1]);
}
}
if(maxLen[length1][length3]==length1)
{
memset(maxLen,0,sizeof(maxLen)); for(int j=0; j<length2; j++)
{
maxLen[j][0]=0;
} for(int k=0; k<length3; k++)
{
maxLen[0][k]=0;
} for(int j=1; j<=length2; j++)
{
for(int k=1; k<=length3; k++)
{
if(strr2[j-1]==strr3[k-1])
maxLen[j][k]=maxLen[j-1][k-1]+1;
else
maxLen[j][k]=max(maxLen[j-1][k],maxLen[j][k-1]);
}
}
if(maxLen[length2][length3]==length2)
printf("Data set %d: yes\n",w);
else
printf("Data set %d: no\n",w); }
else
printf("Data set %d: no\n",w);
} return 0;
}
Zipper(动态规划)的更多相关文章
- HDU 1501 Zipper 动态规划经典
Zipper Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...
- 转载:hdu 动态规划题集
1.Robberies 连接 :http://acm.hdu.edu.cn/showproblem.php?pid=2955 背包;第一次做的时候把概率当做背包(放大100000倍化为整数): ...
- poj动态规划列表
[1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...
- POJ 动态规划题目列表
]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322 ...
- hdu 动态规划(46道题目)倾情奉献~ 【只提供思路与状态转移方程】(转)
HDU 动态规划(46道题目)倾情奉献~ [只提供思路与状态转移方程] Robberies http://acm.hdu.edu.cn/showproblem.php?pid=2955 背包 ...
- soj1010. Zipper
1010. Zipper Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Given three strings, yo ...
- 【转载】 HDU 动态规划46题【只提供思路与状态转移方程】
1.Robberies 连接 :http://acm.hdu.edu.cn/showproblem.php?pid=2955 背包;第一次做的时候把概率当做背包(放大100000倍化为整数) ...
- HDOJ 1501 Zipper 【简单DP】
HDOJ 1501 Zipper [简单DP] Problem Description Given three strings, you are to determine whether the th ...
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
随机推荐
- Java常用的转义字符
以下为常用的转义字符对照表: 字母前面加上捺斜线"\"来表示常见的那些不能显示的ASCII字符.称为转义字符.如\0,\t,\n等,就称为转义字符. 转义字符 意义 ASCII码值 ...
- js 实现图片上传 续
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8&qu ...
- ansible Developing Plugins
Action plugins是模块的前端,可以在调用模块本身之前对控制器执行操作. Cache plugins用于保存“facts”的缓存,以避免代价高昂的fact-gathering操作. Call ...
- 14.Longest Common Prefix (String)
Write a function to find the longest common prefix string amongst an array of strings. class Solutio ...
- MySqlDBHelper
代码: using System; using System.Collections.Generic; using System.Linq; using System.Web; using Syste ...
- 10 Examples of HotSpot JVM Options in Java[z]
There are hundreds of JVM parameters or JVM Options exists inside sun JDK and its virtually impossib ...
- DART: a fast and accurate RNA-seq mapper with a partitioning strategy DART:使用分区策略的快速准确的RNA-seq映射器
DART: a fast and accurate RNA-seq mapper with a partitioning strategyDART:使用分区策略的快速准确的RNA-seq映射器 Abs ...
- 洛谷 P1260 工程规划(差分约束)
题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000).由于对一些任务的起始条件有着严格的限制,所以每个任务的起始时间T1,T2,…,Tn并不是 ...
- 如何使用vsphere client 克隆虚拟机
vSphere 是VMware公司推出一套服务器虚拟化解决方案. 工具/原料 vSphere 测试系统 方法/步骤 1.进入vSphere client,关闭需要克隆的虚拟机win7 2.选中ESXi ...
- 本周MySQL官方verified的bug列表(11月1日至11月7日)
本周MySQL verified的bug列表(11月1日至11月7日) 1.Bug #70839JSON_VALID allows to have two elements with the same ...