洛谷P3690 【模板】Link Cut Tree (LCT)
题目背景
动态树
题目描述
给定n个点以及每个点的权值,要你处理接下来的m个操作。操作有4种。操作从0到3编号。点从1到n编号。
0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。保证x到y是联通的。
1:后接两个整数(x,y),代表连接x到y,若x到y已经联通则无需连接。
2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。
3:后接两个整数(x,y),代表将点x上的权值变成y。
输入输出格式
输入格式:
第1行两个整数,分别为n和m,代表点数和操作数。
第2行到第n+1行,每行一个整数,整数在[1,10^9]内,代表每个点的权值。
第n+2行到第n+m+1行,每行三个整数,分别代表操作类型和操作所需的量。
输出格式:
对于每一个0号操作,你须输出x到y的路径上点权的xor和。
输入输出样例
说明
数据范围: 1 \leq N, M \leq 3 \cdot {10}^51≤N,M≤3⋅105
看了一下午的讲解
看了一晚上的代码
算是差不多理解了,不过还有一个潜在的隐患没有解决,就是代码里那个玄学的pushdown函数
等搞懂了再整理吧
// luogu-judger-enable-o2
// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN= * 1e5 + ;
inline int read()
{
char c = getchar();int x = ,f = ;
while(c < '' || c > ''){if(c == '-')f = -;c = getchar();}
while(c >= '' && c <= ''){x = x * + c - '',c = getchar();}
return x * f;
}
#define fa(x) T[x].f
#define ls(x) T[x].ch[0]
#define rs(x) T[x].ch[1]
int v[MAXN];
struct node {
int f, ch[], s;
bool r;
}T[MAXN];
int ident(int x) {
return T[fa(x)].ch[] == x ? : ;//判断该节点是父亲的哪个儿子
}
int connect(int x,int fa,int how) {
T[x].f=fa;
T[fa].ch[how]=x;//连接
}
inline bool IsRoot(int x) {//若为splay中的根则返回1 否则返回0
return ls( fa(x) ) != x && rs( fa(x) ) != x;
//用到了两个性质
//1.若x与fa(x)之间的边是虚边,那么它的父亲的孩子中不会有他(不在同一个splay内)
//2. splay的根节点与其父亲之间的边是虚边
}
void update(int x) {
T[x].s = T[ls(x)].s ^ T[rs(x)].s ^ v[x];//维护路径上的异或和
}
void pushdown(int x) {
if(T[x].r) {
swap(ls(x),rs(x));
T[ls(x)].r ^= ;
T[rs(x)].r ^= ;
T[x].r = ;//标记下传
}
}
void rotate(int x) {
int Y = T[x].f, R = T[Y].f, Yson = ident(x), Rson = ident(Y);
int B = T[x].ch[Yson ^ ];
//Q为什么要这样写 ******************************************** T[x].f = R;
if(!IsRoot(Y))
connect(x, R, Rson);
//这里如果不判断y是否根节点,那么当y是根节点的时候,0节点的儿子就会被更新为x
//这样x就永远不能被判断为根节点,也就会无限循环下去了
//但是这里不更新x的父亲的话就会出现无限递归的情况
connect(B, Y, Yson);
connect(Y, x, Yson ^ );
update(Y); update(x);
}
int st[MAXN];
void splay(int x) {
int y = x, top = ;
st[++top] = y;
while(!IsRoot(y)) st[++top] = y = fa(y);
while(top) pushdown(st[top--]);
//因为在旋转的时候不会处理标记,所以splay之前应该下传所有标记
for(int y = fa(x); !IsRoot(x); rotate(x), y = fa(x))//只要不是根就转
if(!IsRoot(y))
rotate( ident(x) == ident(y) ? x : y );
}
void access(int x) {//访问x节点
for(int y = ; x; x = fa(y = x))
splay(x), rs(x) = y, update(x);
//首先把x splay到所在平衡树的根,这样可以保证它的右孩子就是在原树中对应的重链(右孩子深度比它大)
//y是splay中x的儿子,把x的右儿子改成y,也就是把x和y之间的边变成实边
//更改了节点顺序,需要update
}
void makeroot(int x) {//把x改为原树的根节点
access(x);
splay(x);
T[x].r ^= ;
pushdown(x);
//首先访问一下x,再把x转到根,
//注意在access的时候都是连接的右儿子,这样会破坏顺序,因此我们需要将左右儿子翻转
}
int findroot(int x) {//找到x在原树中的根节点
access(x);splay(x);
while(ls(x)) x = ls(x);//找到深度最小的点即为根节点
return x;
}
void split(int x, int y) {
makeroot(x);//首先把x置为根节点
access(y); splay(y);
//然后访问一下y,再把y转到根节点,这样y维护的就是x - y 路径上的xor
}
void link(int x, int y) {
makeroot(x);//把x置为根节点
if(findroot(y) != x ) fa(x) = y;
//如果x与y不在同一个splay中,就把y置为x的父亲
//因为不能判断x与y的深度,因此在这里不用更新y的儿子
}
void cut(int x, int y) {
makeroot(x);
if(findroot(y) == x && fa(x) == y && !rs(x)) {
fa(x) = T[y].ch[] = ;
update(y);
}
//注意findroot(y)之后,y会成为根节点
//对于第三个判断
//可以构造出这样的树
// x
// fuck
// y
//在splay中是这样的
// y
//x
// fuck
//这样很显然x与y是不相连的
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
#else
#endif
int N = read(), M = read();
for(int i = ; i <= N; i++) v[i] = read();
for(int i = ; i <= M; i++) {
int opt = read(), x = read(), y = read();
if(opt == ) split(x, y), printf("%d\n",T[y].s);
else if(opt == ) link(x, y);
else if(opt == ) cut(x, y);
else if(opt == ) splay(x), v[x] = y;
}
return ;
}
洛谷P3690 【模板】Link Cut Tree (LCT)的更多相关文章
- 洛谷P3690 [模板] Link Cut Tree [LCT]
题目传送门 Link Cut Tree 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 洛谷.3690.[模板]Link Cut Tree(动态树)
题目链接 LCT(良心总结) #include <cstdio> #include <cctype> #include <algorithm> #define gc ...
- BZOJ 3282 Link Cut Tree (LCT)
题目大意:维护一个森林,支持边的断,连,修改某个点的权值,求树链所有点点权的异或和 洛谷P3690传送门 搞了一个下午终于明白了LCT的原理 #include <cstdio> #incl ...
- 模板Link Cut Tree (动态树)
题目描述 给定N个点以及每个点的权值,要你处理接下来的M个操作.操作有4种.操作从0到3编号.点从1到N编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和.保证x到y是联 ...
- 【刷题】洛谷 P3690 【模板】Link Cut Tree (动态树)
题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor ...
- Luogu 3690 Link Cut Tree
Luogu 3690 Link Cut Tree \(LCT\) 模板题.可以参考讲解和这份码风(个人认为)良好的代码. 注意用 \(set\) 来维护实际图中两点是否有直接连边,否则无脑 \(Lin ...
- AC日记——【模板】Link Cut Tree 洛谷 P3690
[模板]Link Cut Tree 思路: LCT模板: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 30 ...
- 洛谷P3690 Link Cut Tree (模板)
Link Cut Tree 刚开始写了个指针版..调了一天然后放弃了.. 最后还是学了黄学长的板子!! #include <bits/stdc++.h> #define INF 0x3f3 ...
- LuoguP3690 【模板】Link Cut Tree (动态树) LCT模板
P3690 [模板]Link Cut Tree (动态树) 题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两 ...
随机推荐
- Android解析WindowManager(二)Window的属性
前言 在上一篇文章我们学习了WindowManager体系,了解了Window和WindowManager之间的关系,这一篇我们接着来学习Window的属性. 1.概述 上一篇文章中我们讲过了Wind ...
- python 网络 socket
---恢复内容开始--- 1.socket Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口.在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏 ...
- C# winfrom提示框,点击则不显示,不点击则提示输入内容
先看下效果图,初次进来是界面左边的效果,点击请输入账号,清除内容,可以直接输入,右边图 以下代码是失去焦点的,一定要把控件的属性TabStop 改 ...
- Java实例---简单的宠物管理系统
代码分析 Cat.java package com.ftl.petshop; class Cat implements Pet { private String name; private Strin ...
- Eclipse导出可运行的jar包并运行
https://blog.csdn.net/kpchen_0508/article/details/49275407 程序运行的第二种方式:
- ASP.NET Core Startup类 Configure()方法 | ASP.NET Core 中间件详细说明
ASP.NET Core 程序启动过程如下 目录 Startup 类 Configure() 方法 中间件 使用中间件 Configure 方法 的参数 IApplicationBuilder Ext ...
- 乘风破浪:LeetCode真题_014_Longest Common Prefix
乘风破浪:LeetCode真题_014_Longest Common Prefix 一.前言 如何输出最长的共同前缀呢,在给定的字符串中,我们可以通过笨办法去遍历,直到其中某一个字符不相等了,这样就得 ...
- 理解活在Iphone中的那些App (一)
关于一个app的生命 干IOS开发两年多了,如果把大学中的时间也算上,编程也有六年了.这些时间中,从一个懵懵懂懂的学徒,变成一个还算熟练的码农,也多多少少有一点反思.于是,边促成了理解活在Iphone ...
- CSS 预处理器
在程序员眼里,css不像其他程序语言(例如PHP, Javascript等等),有自己的变量.常量.条件语句以及一些编程语法,它只是一行行单纯的属性描述,写起来相当费事,而且代码难以组织和维护.自然的 ...
- Java List详解,面试中应该如何解答关于List的问题
对于面试,我们在介绍Java的List的时候,一般需要介绍到,什么是List?List包括什么?各自在用法上有什么区别,在存储上有什么区别?List需要注意什么?把这些问题串起来,我们可以这样介绍: ...