容易想到设f[i]为杀死i号怪物所消耗的最小体力值,由后继节点更新。然而这显然是有后效性的,正常的dp没法做。

  虽然spfa已经死了,但确实还是挺有意思的。只需要用spfa来更新dp值就可以了。dij看起来也差不多。

  更新部分写的看起来就很慢很能优化一波,在luogu上T一个点,然而实在太懒了就算了吧(

  记得我们老师说过某位学长省选前几乎什么省选算法都不会,然后当场切掉了这题,然后进了省队,然后拿了cu,最后进了pku。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
#define N 200010
#define ll long long
#define inf 100000000000000000
ll read()
{
ll x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,q[N];
ll f[N];
bool flag[N];
struct data
{
ll x,y;
vector<int> from,to;
}a[N];
int inc(int &x){x++;if (x>n+) x-=n+;return x;}
bool cmp(const int &a,const int&b)
{
return f[a]<f[b];
}
void spfa()
{
int head=,tail=n;for (int i=;i<=n;i++) q[i]=i,flag[i]=,f[i]=a[i].y;
sort(q+,q+n+,cmp);
do
{
int x=q[inc(head)],s=a[x].from.size();flag[x]=;
for (int i=;i<s;i++)
{
int y=a[x].from[i];
int t=a[y].to.size();ll sum=a[y].x;
for (int j=;j<t;j++)
{
sum+=f[a[y].to[j]];
if (sum>f[y]) break;
}
if (sum<f[y])
{
f[y]=sum;
if (!flag[y]) q[inc(tail)]=y,flag[y]=;
}
}
}while (head!=tail);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3875.in","r",stdin);
freopen("bzoj3875.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++)
{
a[i].x=read(),a[i].y=read();
int t=read();
while (t--)
{
int x=read();
a[x].from.push_back(i),
a[i].to.push_back(x);
}
}
spfa();
cout<<f[];
return ;
}

BZOJ3875 AHOI2014/JSOI2014骑士游戏(动态规划)的更多相关文章

  1. BZOJ3875: [Ahoi2014&Jsoi2014]骑士游戏

    [传送门:BZOJ3875] 简要题意: 给出n种怪物,每种怪物都带有三个值,S[i],K[i],R[i],分别表示对他使用普通攻击的花费,使用魔法攻击的花费,对他使用普通攻击后生成的其他怪物. 每种 ...

  2. 2019.01.22 bzoj3875: [Ahoi2014&Jsoi2014]骑士游戏(spfa+dp)

    传送门 题意简述:nnn个怪物,对于编号为iii的怪物可以选择用aia_iai​代价将其分裂成另外的bib_ibi​个怪物或者用cic_ici​代价直接消灭它,现在问消灭编号为1的怪物用的最小代价. ...

  3. 【BZOJ3875】[Ahoi2014&Jsoi2014]骑士游戏 SPFA优化DP

    [BZOJ3875][Ahoi2014&Jsoi2014]骑士游戏 Description  [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会扮演一个英勇的 ...

  4. p4042 [AHOI2014/JSOI2014]骑士游戏

    传送门 分析 我们发现对于一个怪物要不然用魔法代价使其无需考虑后续点要么用普通攻击使其转移到他所连的所有点上且所有边大于0 所以我们可以先将一个点的最优代价设为魔法攻击的代价 之后我们倒着跑spfa求 ...

  5. [BZOJ] 3875: [Ahoi2014&Jsoi2014]骑士游戏

    设\(f[x]\)为彻底杀死\(x\)号怪兽的代价 有转移方程 \[ f[x]=min\{k[x],s[x]+\sum f[v]\} \] 其中\(v\)是\(x\)通过普通攻击分裂出的小怪兽 这个东 ...

  6. bzoj 3875: [Ahoi2014&Jsoi2014]骑士游戏【dp+spfa】

    设f[i]为杀死i的最小代价,显然\( f[i]=min(k[i],s[i]+\sum f[to]) \) 但是这个东西有后效性,所以我们使用spfa来做,具体就是每更新一个f[i],就把能被它更新的 ...

  7. LUOGU P4042 [AHOI2014/JSOI2014]骑士游戏 (spfa+dp)

    传送门 解题思路 首先设\(f[x]\)表示消灭\(x\)的最小花费,那么转移方程就是 \(f[x]=min(f[x],\sum f[son[x]] +s[x])\),如果这个转移是一个有向无环图,那 ...

  8. [AHOI2014/JSOI2014]骑士游戏

    题目 思博贪心题写了一个半小时没救了,我也没看出这是一个\(spfa\)来啊 设\(dp_i\)表示彻底干掉第\(i\)只怪物的最小花费,一个非常显然的事情,就是对于\(k_i\)值最小的怪物满足\( ...

  9. 洛谷 P4042 [AHOI2014/JSOI2014]骑士游戏

    题意 有\(n\)个怪物,可以消耗\(k\)的代价消灭一个怪物或者消耗\(s\)的代价将它变成另外一个或多个新的怪物,求消灭怪物$的最小代价 思路 \(DP\)+最短路 这几天做的第一道自己能\(yy ...

随机推荐

  1. 【LG3229】[HNOI2013]旅行

    题面 洛谷 题解 勘误:新的休息点a需要满足的条件2为那一部分小于等于ans 代码 \(100pts\) #include <iostream> #include <cstdio&g ...

  2. Apache入门篇(三)之apache2.4.33的新特性解析与虚拟主机实战

    1.http 2.4新特性 新特性: (1) 在编译时可以将多个MPM构建为可加载模块,可以在运行时通过LoadModule指令配置所选的MPM: (2) 2.2版本的event MPM在实验阶段,到 ...

  3. 添加jQuery方法解析url查询部分

    Web前端不同页面间传值可以使用 cookies.localStorage 和 sessionStorage 等本地存储. 但是,今天我们尝试使用 url 查询,假设我们要传递字符串 str 到 mo ...

  4. Unity3D之AR开发(二)

    上一篇给大家介绍了高通AR的使用,接下来给大家分享一下EasyAR EasyAR引擎简介 EasyAR是做好用的且免费的增强现实(Augmented Reality)引擎,EasyAR为Unity开发 ...

  5. SQL行列乾坤大挪移

    “生活总是这样,有时候,你需要一个苹果,但别人却给了你一个梨.” 今天dalao邮件里需要添加一张每月累计长长的图,可是,拿到手上的SQL导出数据不符合我最爱的pyecharts的数据输入格式,头大. ...

  6. adb shell top 命令详解

    [?25l[0m[H[J 当前系统时间 Tasks: 552 total, 1 running, 510 sleeping, 0 stopped, 0 zombie 任务(进程) 系统现在共有552个 ...

  7. JAVA学习笔记--初始化与清理

    编写程序时,常会由于变量没有初始化而产生各种错误:用完一个元素,如果不将其占用的内存资源释放,则会导致资源耗尽,这也很严重,为此,C++引入了构造器的概念,这是一个在创建对象时被自动调用的特殊方法,以 ...

  8. xshell—实现Linux与Windows之间的文件传递

    在Windows系统上,通过xshell连接Linux系统. 第一种使用方式:从Linux系统上下载文件到Windows系统. 准备工作: $ sudo apt-get install lrzsz 安 ...

  9. Activity 在横竖屏切换情况下的生命周期变化

    title: Activity 在横竖屏切换情况下的生命周期变化 date: 2018-04-26 23:05:57 tags: [Activity] categories: [Mobile,Andr ...

  10. Python 招聘信息爬取及可视化

    自学python的大四狗发现校招招python的屈指可数,全是C++.Java.PHP,但看了下社招岗位还是有的.于是为了更加确定有多少可能找到工作,就用python写了个爬虫爬取招聘信息,数据处理, ...